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Prudence and preference for �exibility gain�

Daniel Danauy

Abstract

Under the expected utility paradigm, prudence (positive third derivative of the
utility function: u000 > 0) is usually associated with the preference of a risk averse
individual for a current certain outcome over a future one, obtained by adding a
zero mean lottery to the current outcome. This preference is measured by the utility
premium, which is higher for a prudent individual the lower her initial wealth is.
However, when the individual has to make a costly investment before attaining the
outcome, she may prefer to delay that investment. This translates into a preference for
a later over the earlier outcome. Therefore, prudence cannot be associated with the
magnitude of the utility premium. In this paper, we show that for an individual who
prefers to delay the investment, prudence is actually related to the economic bene�t
granted by that delay. In particular, if the cost distribution is uniform, a lower expected
unit cost of acquiring the good is associated with a greater bene�t of the investment
delay if and only if u000 > 0. We also show that the preference of an individual for
facing a distribution with a lower expected unit cost and/or a wider support of the
unit cost increases with u000. We provide two applications of this result looking at a
principal-agent relationship and an investment timing problem in production capacity.
We also show that, whereas prudence induces a delay of investment in capacity, it has
an opposite e¤ect when the investment has the nature of a preventive e¤ort.

Keywords: Prudence; Downside risk aversion; Sequential screening; Real Options

J.E.L. Classi�cation Numbers: D81

�This is a revised version of the CREM Working Paper 2017-05, circulated under the same title. I thank
David Pérez Castrillo, Luca Panaccione, Nicolas le Pape and Annalisa Vinella for discussions on the subject
and/or remarks on the previous version. I also thank participants at the 61th Journées LAGV (Marseille)
and the 18th PET Conference (Paris) for their comments. Errors are obviously mine.

yUniversité de Caen Normandie - Centre de Recherche en Economie et Management, Esplanade de la
Paix, 14000 Caen (France). E-mail: daniel.danau@unicaen.fr

1



1 Introduction

A few di¤erent interpretations of prudence have been provided by the literature, all

mathematically equivalent to u000 > 0, where u is the utility function of some given individ-

ual. This notion was introduced by Kimball [18] as a precautionary motive for savings in

response to an increased risk about future revenues. A prudent individual saves more and an

imprudent individual saves less when faced with an increased risk over her future budget. In

another interpretation, strictly related to Kimball�s de�nition, if a risk is added to the future

wealth of the individual, the reduction in her expected utility represents a utility premium,

which is greater the lower her initial wealth is (Hanson and Menezes [12]).1 A somehow

di¤erent interpretation of prudence refers to the preference over speci�c lotteries. If the

prudent individual is asked to choose between two lotteries, which only di¤er in that some

given risk is added to a good outcome in one of the lotteries and to a bad outcome in the

other, then the former lottery will be chosen (Menezes et al. [16]). Accordingly, a prudent

individual is said to be downside risk averse. Still according to this interpretation, when

the individual is called upon to choose between a certain outcome today and an unknown

outcome tomorrow, prudence is viewed as representing the link between the utility premium

and the initial wealth (see Menezes et al. [16] and Eeckhoudt and Schlesinger [8]).

Broadly speaking, in the interpretations provided by the literature, prudence is related

to how much an individual dislikes facing an uncertain future outcome as compared to the

current certain one, which is consistent with Kimball�s de�nition. In each of them, one can

easily identify the individual as being a consumer who derives some utility from her income

(as expressed through the indirect utility function). We can say that prudence expresses the

extent to which the consumer dislikes uncertainty being added to that income in the future,

provided that preference is not explained by risk aversion, to which prudence is related.

Since the argument of the utility function is money, the utility function u (�) of an investor
is tantamount to that of a consumer. This traces back to Bernoulli�s examples, in which the

investor derives a utility from money, consistent with Bernoulli�s and Cramer�s conjecture

that the investor cares about the utility derived from money rather than about money per

se.2 Hence, for a prudent investor to accept making a risky investment that adds a lottery

to her initial wealth, she must obtain a bene�t that more than compensates for the utility

premium (the cost in terms of expected utility).

What about an investor who has a strict preference for future investment opportunities

over the current ones? That investor prefers later outcomes to early outcomes. Is that

preference still related to prudence? To the best of my knowledge, this kind of situations

has not been considered in Decision theory hitherto.

1As pointed out by Eeckhoudt and Schlesinger [8], the notion of utility premium seems to have �rst been
introduced by Friedman and Savage [10] and, apart from Hanson and Menezes [12], no many studies on risk
attitude have referred to it until recently.

2See, for instance, Levy [15] on page 25.
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The reason why future investment opportunities might be preferable is that investments

are irreversible, as shown by the literature on investment under uncertainty (Dixit and

Pindyck [5]). By delaying an investment, the investor can acquire additional information,

which will then be used to decide how much to invest. In such situations, prudence cannot

be related to the cost faced by the individual to accept the future outcome over the current

one. In this paper, we show that prudence is actually related to the bene�t drawn from

the investment delay, which we will call a "�exibility gain", as in Dixit and Pindyck [5].

Intuitively, prudence is related to the �exibility gain because a delay in investment leads

to a reduction in downside risk. By not engaging in an irreversible investment today, the

investor preserves the possibility of investing less tomorrow, if an unfavorable state of nature

is realized.

As an illustration, take an individual who obtains a net utility of u (y) � �y from an

immediate investment in a capacity of size y, where � is the expected cost of acquiring a

capacity unit and the true cost is �+e�, where e� 2 f��; �g with equal probabilities. Taking
the utility loss from investment to be linear looks as a simpli�cation as compared to what a

utility function should be, but it is helpful for illustrating what we would expect to observe

with a more general utility function as well. The optimal choice of y is endogenous and

depends on the production technology (as represented by � and � + e�). Moreover, whereas
we refer to y as to "capacity," y may well represent the amount of production that a principal

asks an agent to produce, in a contract, when the cost of production is unknown; or it may

represent the supply of a monopolist who knows the market demand, whereas the cost is

unknown. Not surprisingly, assuming no discount factor, the decision maker will prefer to

delay the decision until after she will have observed the realization of � + e�; hence she has
a �exibility gain. We �nd that a greater �exibility gain for the individual is associated with

a lower value of � if and only if u000 is positive. This is explained by the preference for less

downside risk, as in Menezes et al. [16], with the caveat that here less downside risk re�ects

a greater �exibility gain rather than a lower utility premium.

In the development, we consider a general utility function which depends on both the

pro�t obtained by using the capacity and on the cost of acquisition, where the cost is subject

to a stochastic shift between periods, as in the above example. As one might expect, the

�exibility gain will depend on the characteristics of the cost function. However, the link

between �exibility gain and prudence follows the same principle as in the previous example.

Looking next at the preference over di¤erent distributions of optimal capacities, we

consider cost functions of the form �i+ e�j, where ij denotes a distribution characterized by
mean �i and spread e�j. We show that the higher that u000 is, the more that distributions
with lower �i and/or more dispersed values e�j are preferable to other distributions. Hence,
the shape of the marginal utility of capacity provides a measure of how much the individual

is available to pay to be able to use a better technology, such as a technology with a lower

expected cost of acquisition. Remarkably, the distributions among which the individual
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is required to choose respect neither �rst nor second order stochastic dominance, as most

commonly assumed by the literature.

We also consider an optimal prevention problem, in line with Eeckhoudt and Gollier

[6]. In a setting in which the individual must decide today how much to invest in order to

prevent a disaster, the authors show that a prudent individual invests less than an imprudent

individual would do. We extend their setting by allowing for the possibility of a stochastic

change of the cost of e¤ort from one period to another and before the disaster might occur.

The individual has to choose between making the e¤ort immediately and waiting for the

next period, when the cost of e¤ort will have evolved. We show that, in this kind of setting, a

prudent individual has no �exibility gain. This is because, when the investment is to be made

to prevent a disaster, rather than representing an "opportunity", delaying the investment

adds more to the risk that the individual faces.

To complete the analysis, we provide applications to principal-agent models and in-

vestment timing problems. In principal-agent models in which the type of the agent is a

distribution rather than a state of nature, the information rents depend on the third deriva-

tive of the utility function. In investment timing problems in which the individual may have

a �exibility gain from delaying investments (i.e., investments represent an "opportunity"

rather than a preventive e¤ort), a prudent investor decides to invest less often.

The paper is �rst related to the studies belonging to the literature on Decision theory, in

which prudence is de�ned as an averse attitude to downside risk (Menezes et al. [16], Bigelow

and Menezes [1] and Eeckhoudt and Schlesinger [8]). We contribute to this literature by

showing that, in addition to being associated with the cost borne by the individual when the

future outcome is taken over the current one, the aversion to downside risk is also associated

with akind of preference for investment delay.

The paper is also related to the studies in Decision theory that identify a link between

prudence and irreversibility of decision making (Gollier et al. [11] and Eeckhoudt and

Gollier [6]). However, this literature focuses exclusively on preventive investment problems

and, particularly, on situations in which no information acquisition can take place before

deciding to invest. We contribute to this literature by showing that prudence is also related

to situations in which information can be acquired prior to investing.

In the literature on investment under uncertainty, the investor is usually assumed to be

neutral to risk. This is without loss of generality as long as �nancial markets are complete

and a risk averse investor can always �nd costless ways to hedge against the risk. An

exception is the study of Henderson and Hobson [13], who allow for incomplete markets.

Not surprisingly, they �nd that a risk averse investor invests less often under uncertainty

than does a risk neutral investor. Hitherto no study has shown how an investment timing

decision is a¤ected by the fact that the individual is prudent. To make the point, in the

main development we consider a setting in which uncertainty is resolved after one period,

as is usual in Decision theory. In the application to an investment timing decision under
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multi-period uncertainty, we rely on a speci�c example, in which the stochastic variable

follows a random walk law of motion.

The outline of the paper is as follows. In Section 2 we present the model. In Section

3 we analyze the link between prudence and �exibility gain to the individual in a two-

period model. In Section 4 we consider related concepts that are used in Decision theory

and compare with the notion of �exibility gain. In Section 5 we present the applications.
Section 6 concludes.

2 Model

Consider an individual who has an investment opportunity. The investment has a cost

of C (y; x) and yields a pro�t of � (y), where y is the size of the activity (say, the installed

capacity) and x is a variable that induces a stochastic shift of the cost function between

periods. The overall utility of the individual is given by

bu1 (m+ � (y)) + bu0 (m� C (y; x)) ;
where m is her initial wealth, bu1 (�) is the utility obtained once the outcome of investment is
obtained and bu0 (�) is the utility of the individual at the moment when the cost of investment
must be faced. The cost function is such that @C(y;x)

@y
> 0; @C(y;x)

@x
> 0 and @2C(y;x)

@y@x
> 0. The

latter two conditions express the role of the variable x in the model. For any given capacity

y, the total cost and the marginal cost both increase with x. For later use, we also de�ne

the marginal rate of the cost MRC (y; x) as the ratio between the marginal change of the

cost with respect to x and the marginal change of the cost with respect to capacity y:

MRCx=y =
@C(y;x)
@x

=@C(y;x)
@y

.

We assume that there are two periods and that the variable x is evolving intertemporally.

We take x 2 f�; � + e�g. If the investment is made in period zero, then the cost function
is known and given by C (y; �), with � > 0: If the investment is made in period 1, then

the cost function is unknown in period zero and given by C (y; � + e�). We assume that
E [e�] = 0; e� 2 [��; �], where � > 0, and that the distribution function g (e�) has positive
density everywhere.

Because the utility functions ultimately depend on y, the size of the activity, we further

introduce the notation bu1 (m+ � (y)) = u1;m (y) and bu0 (m� C (y; x)) = u0;m (y; x) ; for

convenience. The function u1;m (y) is such that u01;m (y) > 0; u
00
1;m (y) < 0 and u

000
1;m (y) has a

constant sign. Similarly, bu0 (�) is such that bu00 (�) > 0; bu000 (�) < 0 and bu0000 (�) has a constant
sign. We respectively denote as A (y) = �u001;m(y)

u01;m(y)
and P (y) = �u0001;m(y)

u001;m(y)
the coe¢ cient of

absolute risk aversion and that of absolute prudence of the individual with respect to the

capacity y.

Noticeably, here above, after stating the properties of u1;m (y) ; we have presented the
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properties of bu0 (�) rather than those of u0;m (y; x) : Referring to bu0 (�) is useful in that is
enables us to distinguish between the utility of money and the cost function, which includes

the stochastic component x, in addition to y.

3 Prudence and �exibility gain

There are two decisions that the individual has to make. First, the individual chooses

whether to invest in period zero or wait for the realization of e� before making that decision.
Second, given x 2 f�; � + e�g, the individual decides how many capacity units to install.
Let us �rst consider the second decision. The �rst-order condition of the individual�s

program is given by

u01;m (y) = �
@u0;m (y; x)

@y
;

where u01;m (y) is the marginal bene�t of y in period 1 and �
@u0;m(y;x)

@y
> 0 is the marginal

utility loss that the individual must face in period zero to acquire y units. We denote

the unique solution as ym (x). Observing that y0m (x) = �MRCx=y, one has y0m (x) < 0.

Because a higher value of x re�ects a higher cost of acquiring a given amount of capacity,

less capacity will be installed. Assuming no discount factor, for simplicity, it is optimal to

delay the investment decision until the next period, when e� will be known, provided that
w (�) > 0, where

w (�) = E [u1;m (y (� + e�)) + u0;m (y (� + e�) ; � + e�)]� [u1;m (y (�)) + u0;m (y (�) ; �)] :
We can say that, by delaying the decision to invest, the investor obtains a �exibility gain,

which is given by the possibility of setting the capacity level according to the true realization

of the cost. The existence of a �exibility gain is explained by the irreversible nature of the

investment of cost C (y; x). By committing today to acquire y (�) ; the individual renounces

to the opportunity of purchasing y (� + e�) instead of y (�) capacity units, when e� will be
known and, implicitly, so will be the cost function. Provided u0;m (y; x) = bu0 (m� C (y; x)),
the �exibility gain is found to be related to a quota of the utility u0;m (y; x) to which

the individual must renounce to acquire capacity units. The lemma below shows that the

�exibility gain is positive: the lower the value of x is, the more units of capacity the individual

will want to acquire, hence the higher the marginal utility loss �@u0;m(y(x);x)

@x
that she is ready

to be faced with.

Lemma 1 The �exibility gain is expressed as follows:

w (�) =

Z �

���

�
�@u0;m (y (x) ; x)

@x

�
g (x) dx�

Z �+�

�

�
�@u0;m (y (x) ; x)

@x

�
g (x) dx (1)

Proof. Considering that the optimal capacity is such that u01 (y (x)) = @u0 (y (x) ; x) =@y (x),
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8x, rewrite

w (�) = E [u1;m (y (� + e�)) + u0;m (y (� + e�) ; � + e�)]� [u1;m (y (�)) + u0;m (y (�) ; �)]
= E

�Z �+e�
�

��
u01;m (y (x)) +

@u0;m (y (x) ; x)

@y (x)

�
y0 (x) +

@u0;m (y (x) ; x)

@x

�
dx

�
= E

�Z �+e�
�

@u0;m (y (x) ; x)

@x
dx

�
;

which is further reformulated as (1).

Resting on the above lemma, we will show that the marginal �exibility gain dw(�)
d�

depends

on the absolute degree of prudence of the individual. To that end, we de�ne vm (x) =

u1;m (y (x)) ; for convenience. Using the �rst-order condition, we see that the marginal loss

�@u0(y(x);x)
@x

incurred by the individual when investing is tantamount to a marginal utility of

�v0m (x) ; which is obtained as the installed capacity is used. Indeed,

�v0m (x) = �u01;m (y (x)) y0 (x) = u01;m (y (x))MRCx=y(x)

= bu00 (m� C (y (x) ; x)) @C (y (x) ; x)@x

= �@u0 (y (x) ; x)
@x

:

Recall now that the �exibility gain exists because the individual is available to face a

decreasing marginal loss of �@u0(y(x);x)
@x

. This translates into a decreasing marginal bene�t of

�v0 (x) from using the installed capacity. Take now the marginal �exibility gain dw(�;�)
d�

. A

raise in � induces a downward shift of the marginal loss �@u0(y(x);x)
@x

; 8x 2 [� � �; � + �].
This re�ects a downward shift of the marginal bene�t from investment, �v0 (x), 8x 2
[� � �; � + �]. Moreover, the decrease in the marginal bene�t is not necessarily equal to
the left and to the right of �. Actually, it depends on � [v0m (x) g (x)]

00 ; i.e., on the shape

of �v0 (x) as weighted by the density function of each speci�c value of x. Knowing that
the �exibility gain is expressed as in (1), that shape determines whether the �exibility gain

decreases or increases with �.

Lemma 2 Assume that [v0 (x) g (x)]00 has constant sign. Then, dw(�;�)
d�

< 0 if and only if

� [v0m (x) g (x)]
00
< 0:

Proof. Using (1), we calculate

dw (�; �)

d�
=

�
@u0;m (y (� + �) ; � + �)

@�
g (� + �)� @u0;m (y (�) ; �)

@�
g (�)

�
�
�
@u0;m (y (�) ; �)

@�
g (�)� @u0;m (y (� � �) ; � � �)

@�
g (� � �)

�
:
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Using u0;m (y (x) ; x) = bu0 (m� C (y (x) ; x)), this is further rewritten as
dw (�; �)

d�
= bu00 (m� C (y (� + �) ; � + �)) @C (y (� + �) ; � + �)@�

g (� + �)

�bu00 (m� C (y (�) ; �)) @C (y (�) ; �)@�
g (�)

�bu00 (m� C (y (�) ; �)) @C (y (�) ; �)@�
g (�)

+bu00 (m� C (y (� � �) ; � � �)) @C (y (� � �) ; � � �)@�
g (� � �) :

Reformulating the �rst-order condition as

u01;m (y (x)) = bu00 (m� C (y (x) ; x)) @C (y (x) ; x)@y (x)

, bu00 (m� C (y (x) ; x)) = u01;m (y (x))
@C(y(x);x)
@y(x)

;

we can write

dw (�; �)

d�
= u01;m (y (� + �))

@C(y(�+�);�+�)
@�

@C(y(�+�);�+�)
@y(�+�)

g (� + �)� u01;m (y (�))
@C(y(�);�)

@�
@C(y(�);�)
@y(�)

g (�)

+u01;m (y (� � �))
@C(y(���);���)

@�
@C(y(���);���)

@y(���)

g (� � �)� u01;m (y (�))
@C(y(�);�)

@�
@C(y(�);�)
@y(�)

g (�)

=

Z �

���

Z x+�

x

�
u01;m (y (z))MRC (y (z) ; z) g (z)

�00
dzdx;

where the de�nition MRC (y; z) = @C(y;z)
@z

=@C(y;z)
@y

is used. Observing from this same de�ni-

tion that y0 (z) = �MRC (y; z), we can further write

dw (�; �)

d�
=

Z �

���

Z x+�

x

�
u01;m (y (z)) y

0 (z) g (z)
�00
dxdz =

Z �

���

Z x+�

x

[v0m (z) g (z)]
00
dxdz:

The result in the lemma follows because [v0m (z) g (z)]
00 has constant sign.

From the above lemma, it is clear that the �exibility gain is related to the third derivative

of the utility function. We are left with showing in which way. According to the next result,

the marginal �exibility gain is negative if and only if the coe¢ cient of absolute prudence is

su¢ ciently high, depending on the properties of the cost function.

Proposition 1 dw(�;�)
d�

< 0 if and only if:

P1 (y (z)) >
1

A1 (y (z))

�
� [MRS (z) g (z)]

00

MRS (z) g (z)

�
+ 2

[MRS (z) g (z)]0

MRS (z) g (z)

8



Proof. Compute

v0m (x) = u
0
1;m (y (x)) y

0 (x) = �u01;m (y (x))
@C(y(x);x)

@x
@C(y(x);x)
@y(x)

:

Then

[v0m (z) g (z)]
00
= �

�
u01;m (y (z))MRS (z) g (z)

�00
= �u0001;m (y (z))MRS (z) g (z)� 2u001;m (y (z)) [MRS (z) g (z)]

0

�u01;m (y (z)) (MRS (z) g (z))
00 :

Because MRS (z) > 0; [v0m (z) g (z)]
00 < 0 if and only if

�
u0001;m (y (z))

u001;m (y (z))
> 2

[MRS (z) g (z)]0

MRS (z) g (z)
+
u01;m (y (z))

u001;m (y (z))

[MRS (z) g (z)]00

MRS (z) g (z)
;

which is rewritten as in the proposition.

Therefore, the bene�t of the decision to delay the investment is related to how prudent

the individual is. In investment problems, the bene�t of information acquisition is usually

more important the more costly that the investment is. What Proposition 1 shows is that

this is true when the individual is not very prudent, but not otherwise. To understand the

importance of this result for individual decision making, we compare it with the ways in

which the concept of prudence has been used in the literature and develop a few economic

applications.

4 Related concepts

4.1 Utility premium

In this section we show that the result in Proposition 1 allows for a broader interpretation

of prudence than usually adopted in the literature. We know that, by applying Kimball�s

de�nition, prudence is equivalent to u000 (�) > 0, where u (�) is the utility function of some
individual. Applying Jensen inequality, this is equivalent to E [u0 (y + e")] > u0 (y) ; for some
random e" such that E [e"] = 0. Using this equivalence, prudence is usually associated with
the utility premium the individual requires for accepting the unknown outcome. Indeed,

supposing that the future capacity is y+e" and that it is exogenously given to the individual
at no cost, she is prudent when w00 (y) > 0, where

w0 (y) = E [u (y + e")]� u (y) < 0;
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and �w0 (y) is her utility premium (see, for instance, Eeckhoudt and Schlesinger [8]). For

a prudent individual the utility premium �w0 (y) decreases as y is raised. If the individual
has to pay for that capacity and her utility is quasi-linear in the cost occasioned by that

purchase, then the utility premium is �w1 (y), where

w1 (y) = E [u (y + e")]� u (y)� fE [(� + e") (y + e")]� �yg :
Because E [(� + e") (y + e")] � �y = E

�e"2�, the utility premium is negative and even lower

than in the previous case, if e" has a strictly positive variance.
Let us now turn to consider our setting, where y is endogenous. To compare with the

approach just presented, we simplify the model in the previous section by assuming that g (�)
is a constant, which entails that the distribution function is uniform, that the utility u0 (�)
is quasilinear, bu0 (m� xy) = m�xy, and that the cost function is linear: C (y; x) = xy. As
we will see, this simpli�cation will allow us to provide a measure of the marginal �exibility

gain as depending on the sign of u000 (�). The individual has a �exibility gain from delaying

the investment, written as:

bw (�) = E [u1;m (y (� + e�))� (� + e�) y (� + e�)]� (u1;m (y (�))� �y (�))
= E

Z �+e�
�

�
u01;m (y (x))� xy0 (x)� y (x)

�
dx:

Knowing that the optimal capacity y (x) is such that u01;m (y (x)) = xy0 (x) ; 8x, we can
rewrite the above expression as

bw (�) = Z �

���
[y (x)� y (x+ �)] gdx; (2)

where g = g (x) ;8x. Unlike w0 (y) and w1 (y), bw (�) is positive. Rather than facing a
cost from taking the outcome under the expected operator, instead of the certain one,

the individual obtains a bene�t, which represents the �exibility gain. Recall from the above

presentation that the sign of the marginal utility premium depends on whether the individual

is or not prudent. We show in what follows that also the marginal �exibility gain depends

on whether the individual is or not prudent.

Corollary 1 bw0 (�) < 0 if and only if u0001;m (�) > 0.
Proof. De�ne f (�) the inverse function of u01;m (�) and

� (a; b; c) = [f (a)� f (a+ c)]� [f (b)� f (b+ c)] ; (3)

where b > a and c > 0. One has � (a; b; c) > 0 if and only if
R a+c
a

[f 0 (z)� f 0 (z + b� a)] dz <
0. Provided u0001;m (�) has constant sign, this is also the case of f 0 (�), and � (a; b; c) > 0

if and only if f 0 (z) < f 0 (z + b� a) ; for any given z 2 [a; a+ c]. This is equivalent to
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u001;m (y (z)) > u001;m (y (z + b� a)). Because b > a and u001;m (�) < 0, y (z) > y (z + b� a).
Hence, u001;m (y (z)) > u

00
1;m (y (z + b� a)) is equivalent to u000 > 0 and so is � (a; b; c) > 0.

Using (2), we can write

bw0 (�) = f[y (�)� y (� + �)]� [y (� � �)� y (�)]g g
= �� (� � �; �; �) g:

Hence, bw0 (�) < 0 if and only if � (� � �; �; �) > 0, which was shown to be equivalent to

u000 > 0.

In good substance, the reason why the �exibility gain is related to whether the individual

is or not prudent is that the downside risk is reduced when the investment (and, implicitly,

the consumption) is delayed rather than taking place immediately. This provides a di¤erent

approach to prudence than usually thought of.

4.2 Choice between distributions

As is well known, the preference of the individual derived with the expected utility

approach can be replicated as a choice between distributions rather than a choice between

a certain outcome today and an uncertain outcome tomorrow. For that, the distributions

must respect some stochastic ordering. Indeed, an individual whose utility u (y) increases

with y dislikes facing the distribution F2 (y) which is �rst-order stochastically dominated

(FSD) by F1 (y), since low values of y are more likely in F2 (y) than in F1 (y) ; whereas the

converse is true for high values. If the individual is also risk averse, then she dislikes facing a

distribution F2 (y) that is second-order stochastically dominated (SSD) by F1 (y), provided

F2 (y) is riskier than F1 (y). Moreover, a prudent individual dislikes F2 (y) if it is third-order

stochastically dominated (TSD) by F1 (y), provided F2 (y) embodies a higher downside risk

than F1 (y). The literature has shown that this reasoning applies to the comparison between

higher order derivatives of the utility function and higher orders of stochastic dominance

(see Eeckhoudt and Schlesinger [8]).

Consider now the notion of prudence and its link with stochastic dominance. Considering

that FSD implies SSD and that SSD implies TSD, it is su¢ cient to learn that F2 (y) is FSD

by F1 (y), or SSD by F1 (y), to know that a prudent individual will prefer the lottery F1 (y) to

F2 (y). However, when this is true, one does not learn anything speci�c about prudence, since

risk aversion is su¢ cient for the individual to prefer the distribution F1 (y). In our approach,

in which the individual is an investor and enjoys a �exibility gain in her investment decision,

the preference over distributions is related to the notion of prudence for distributions that

respect neither �rst-order nor second-order stochastic dominance. This is shown hereafter.

Take for simplicity the net utility function u1;m (y)� xy, as in the previous section, and
assume that x 2

�
�i + �j; �i � �j

	
, where the two values have equal probability, 8i 2 f1; 2g

and 8j 2 f1; 2g, �2 > �1 and �2 > �1. Instead of choosing whether to invest in period
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zero or one, the individual must select one of four cost distributions, that are indexed by

ij. Remarkably, two distributions have the same mean and two of them the same spread,

so one can associate the former pair with �rst-order stochastic dominance and the latter

pair with mean-preserving spread, which is a particular case of second-order stochastic

dominance. However, neither �rst- nor second-order stochastic dominance applies, if the

four distributions are considered altogether.

Turning now to the preference of the individual over these distributions, she will obviously

prefer 1j to 2j, and it is easy to show that she also prefers i2 to i1. We will prove that the

third derivative of the utility function measures the extent to which the individual prefers

to be faced with any of these distributions. To that end, we de�ne

Dij=i0j0 = E [Uij � Ui0j0 ] ;

where

Uij = u1;m
�
y
�
�i + e�j��� ��i + e�j� y ��i + e�j� :

For instance, D1j=2j measures the additional gain that a technology associated with an

expected unit cost of �1 grants, relative to one associated with an expected unit cost of �2,

for any given value �j of the spread.

Proposition 2 (i) D1j=2j0 increases with u0001;m (�), 8j � j0.
(ii) Di2=i01 increases with u1;m (�)000, 8i � i0.
(iii) D11=22 increases with u1;m (�)000 if and only if �2 � �1 > �2 � �1:

Proof. Being based on the de�nition of Uij, we can compute

Dij=i0j0 = E [Uij � Ui0j0 ]

= �E
"Z �i0+e�j0

�i+e�j u0 (y (x)) y0 (x) dx

#
� E

��
�i + e�j� y ��i + e�j��

+E
��
�i0 + e�j0� y ��i0 + e�j0��

= �E
Z �i0+e�j0
�i+e�j xy0 (x) dx� E

��
�i + e�j� y ��i + e�j��+ E ���i0 + e�j0� y ��i0 + e�j0�� ;

which further reduces to

Dij=i0j0 = E
Z �i0+e�j0
�i+e�j y (x) dx: (4)
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Proof of (i) and (ii). Using (4) and (3), we can further develop

D1j=2j = E
Z �2+e�j
�1+e�j y (x) dx

= E

"Z �1

�1+e�j y (x) dx+
Z �2

�1

y (x) dx+

Z �2+e�j
�2

y (x) dx

#

=
1

2

Z �1

�1��j
� (x; x+��; nj) dx+

Z �2

�1

y (x) dx;

where �� = �2��1: In the expression of D1j=2j; the term that depends on u0001;m (�) is � (�; �; �),
as de�ned in (3), which increases with u0001;m (�). Also,

Di2=i1 = �E
�Z �i+e�2

�i+e�1 y (x) dx
�

=
1

2

�Z �i

�i��2
y (x) dx�

Z �i+�2

�i

y (x) dx

�
� 1
2

�Z �i

�i��1
y (x) dx�

Z �i+�1

�i

y (x) dx

�
=

1

2

Z �i

�i��2
� (x; x+��; �2) dx+

1

2

�Z �i+��

�i

y (x) dx�
Z �i+�1+��

�i+�1

y (x) dx

�
;

where �� = �2 � �1. Again, the term that depends on u1;m (�)000 is � (�; �; �) ; which increases
with u1;m (�)000.
Rewriting

D1j=2j0 = D1j=2j +D2j=2j0 =

(
D1j=2j; if j0 = j;

D12=22 +D22=21; if j0 = 1 < j = 2

and

Di2=i01 = Di2=i1 +Di1=i01 =

(
Di2=i1, if i = i0,

D12=11 +D11=21, if i = 1 < i0 = 2
;

and considering that D1j=2j; 8j; and Di2=i1; 8i; increase with u1;m (�)000, we deduce that this
is the case of D1j=2j0 and Di2=i01 as well.

Proof of (iii). Using (4) and (3), we can compute

D11=22 = E
�Z �H+e�H

�L+e�L y (x) dx

�
=

1

2

Z �H��H

�L��L
� (x; x+ �L; x+ 2�L) dx+

Z �L+�����

�L

y (x) dx

If �� > ��, then D11=22 is positive and increases with � (�; �; �); if �� < ��; then it is

negative and decreases with � (�; �; �). Provided that � (�; �; �) increases with u0001;m (�), the
result follows.

Therefore, how much an individual prefers being faced with a set
�
�i � �j; �i + �j

	
;
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rather than with a set
�
�i0 � �j0 ; �i0 + �j0

	
; is related to u0001;m (�). Remarkably, one cannot

rely on the usual notions of stochastic dominance to capture the link between a preference

over distributions and u0001;m (�). Indeed, it is easy to show that, if two distributions share the
same support but are respectively ordered in the sense of �rst-order stochastic dominance

and mean preserving spread, then the preference of the individual for one distribution is

unrelated to u0001;m (�).

4.3 Optimal prevention

As explained by Gollier and Eeckhoudt [6], prevention is de�ned as the e¤ort undertaken

to reduce the probability of occurrence of an adverse e¤ect. They �nd that a prudent

individual makes a lower preventive e¤ort than an imprudent individual. In their setting, the

individual has no current consumption and the probability of future consumption depends

on the preventive e¤ort. The preventive e¤ort is "in�exible" in the sense that there is no

bene�t from information acquisition by postponing the decision. In what follows we show

that when the investment has the nature of a preventive e¤ort, a prudent individual does

not consider the information acquisition as an opportunity and, hence, there is no �exibility

gain.

We begin by considering the model of Gollier and Eeckhoudt [6]. The individual may or

may not be exposed to a loss of L > 0 in the future. The probability of being exposed to

the loss, denoted p (e), depends on her e¤ort e. The expected utility is written as

p (e)u (m� L� e) + [1� p (e)]u (m� e) :

Letting c (e) be the cost of exerting e¤ort, we can say that, in this formulation, c (e) = e.

Let us assume now that the individual may take advantage of the information that

becomes available over time before deciding how much e¤ort to exert. This is possible

because the cost of e¤ort is c0 (e) = e at time zero and c1 (e) = e + e� at time one. The
�exibility gain from delaying the decision is written as

wp = E [p (e1 (e�))u (m� L� e1 (e�)� e�) + (1� p (e1 (e�)))u (m� e1 (e�)� e�)]
� [p (e0)u (m� L� e0) + (1� p (e0))u (m� e0)] ;

where e0 is the optimal e¤ort, if exerted in period zero, and e1 (e�) is the optimal e¤ort, if
exerted in period one, which depends on the realization of e�.
Proposition 3 If u00 (�) = 0 then wp = 0.
If u00 (�) < 0 and u000 (�) � 0, then wp < 0.
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Proof. The optimal e¤ort is such that

u (m� L� x)� u (m� x) = p (e)

p0 (e)
u0 (m� L� x) + 1� p (e)

p0 (e)
u0 (m� x) ;

where x = e if the e¤ort is made in period zero, and x = e + e� if e¤ort is made in period
one. Using this �rst-order condition in wp, we can rewrite

wp = Ep (e)
�
p (e)

p0 (e)
u0 (m� L� e� e�) + 1� p (e)

p0 (e)
u0 (m� e� e�)�

�p (e)
�
p (e)

p0 (e)
u0 (m� L� e) + 1� p (e)

p0 (e)
u0 (m� e)

�
+E [u (m� e� e�)]� u (m� e) :

This is further reformulated as

wp =
p (e)

p0 (e)

Z e

e��

Z e+�

x

p (e)
e+ � � x

�
u000 (m� L� z) + (1� p (e)) e+ � � x

�
u000 (m� z) dzdx

+

Z e

e��

Z e+�

x

u00 (m� z) dx;

from which the results in the proposition follow.

The proposition is explained by the fact that, when the investment to be made consists in

a preventive e¤ort, delaying the investment raises the risk to which the investor is exposed

rather than granting him an opportunity. This is why a risk neutral individual attaches

no value to the possibility of acquiring information, and for a risk averse individual with

non-concave marginal utility the �exibility gain is negative. This result shows that the core

reason why prudence is related to the �exibility gain in our model, is that future brings

better investment opportunities rather than more risk.

5 Applications

We hereafter propose a few examples, in which the utility function of the decision maker

is given by u (y) � xy, where u (y) is a constant relative risk aversion function, de�ned as
follows:

u (y) =
1

1� 
 y
1�
;

for some 
 2 (0; 1). Accordingly, we have u0 = y�
 > 0, u00 = �
y�
�1 < 0 and u000 =


 (
 + 1) y�
�2 > 0. Considering a utility function with these properties is convenient in

that it permits to look at variations in u000 through variations in 
: Indeed, one has

du000

d

= (2
 + 1) y�
�2 + 
 (
 + 1) y�
�2 ln y;

15



which is strictly positive if the quantity y is above one. The second and the third derivatives

of u (�) are also the second and the third derivatives of u (y)� xy.

5.1 Delegation with unknown cost in the contracting stage

A principal who delegates the production activity to an agent obtains the gross utility

u (y) from consumption of the y units produced by the agent. By assigning a pro�t of

� = t (x; y)� xy to the agent, where t (x; y) is a transfer and x the unit cost of production,
the principal obtains a net utility of u (y)� xy � �.
Take x0 = � to be known and x1 2 f� � �; � + �g with equal probabilities. From the

previous analysis, we know that, if � = 0, then the principal strictly prefers to condition

the production quantity on x1; rather than on x0, since, by doing so, she obtains a greater
�exibility gain. Moreover, according to Corollary 1, higher values of � are associated with a

smaller �exibility gain because u000 > 0.

Remarkably, in principal-agent models the usual concept that is used in order to express

the principal�s preferences is that of the monotonic likelihood ratio, which is more restrictive

than stochastic dominance (see, for instance, Eeckhoudt et al [7], page 39). We hereafter

show that, in the framework just considered, it is essential to refer to the concept of prudence.

Suppose that the principal can choose between an agent producing at a cost of �1 + e�1
and an agent producing at a cost of �2+e�2, where �1 < �2 and �1 < �2. We saw that, if the
principal can leave zero pro�t to the agent regardless of his cost, then the principal prefers a

cost of �1 + e�1 if and only if �2� �1 > �2� �1 (Proposition 2). Moreover, the gain increases
with u000. Indeed, using u0 = � + e� and u0 = y�
, we see that y (� + e�) = (� + e�)� 1


 and

D11=22 = E
Z �2+e�2
�1+e�1 x

� 1

 dx

together with
dD11=22

d

=
1


2
E
Z �2+e�2
�1+e�1 x

� 1

 ln (x) dx;

which is positive if the unit cost is above 1 in all states. Since du000=d
 > 0, we can say that

a greater value of u000 is associated with a greater value of D11=22, as in Proposition 2.

Why is this relevant? Suppose that the principal does not know the type of agent she is

facing, where the type is de�ned by the distribution indexed by ij 2 f11; 12; 21; 22g. Instead,
the agent holds this information. Applying the Revelation Principle, the agent is required

to make a report to the principal about his type, and a rent must be conceded to type 11

in order not to declare, for instance, 22. The greater u000 is the higher the information rent

that the principal will prefer to concede to type �1+e�1 to solve the usual trade-o¤ between
rent extraction and e¢ ciency loss. Indeed, denoting �1 and �2 the pro�ts designed for the
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two types and setting �2 = 0, it is easy to verify that

�1 = (�2 � �1)E [y (�2 + e�2)]� (�2 � �1)E [y (�2 � �2)� y (�2 + �2)] :
Replacing y (� + e�) = (� + e�)� 1


 , this becomes

�1 = (�2 � �1)E
h
(�2 + e�2)� 1




i
� (�2 � �1)E

h
(�2 � �2)

� 1

 � y (�2 + �2)

� 1



i
:

Therefore, we see that

d�1
d


=
1

2
2
((�2 � �1)� (�2 � �1))

�
(�2 � �2)

� 1

 ln (�2 � �2)

�
+
1

2
2
((�2 � �1) + (�2 � �1))

�
y (�2 + �2)

� 1

 ln (�2 + �2)

�
> 0

which con�rms that the principal prefers to assign a higher information rent the greater u000

is.34

5.2 Price discrimination with unknown preferences

The example presented above can be framed within the recent literature on principal-

agent problems with privately known distributions. Most of those studies are about price

discrimination in the relationship between a monopolist and a consumer, none of whom

knows the consumer�s valuation for the good in the contracting stage, whereas the consumer

has private information on the distribution of his valuation. The pioneering study is that of

Courty and Li [2]. They assume that the monopolist receives a �xed payment a when the

consumer is still uninformed of his valuation. This might be followed by a reimbursement k,

which the consumer can require in a later stage, after learning his true valuation. Of course,

the consumer will want to be reimbursed, and will thus renounce to consume, if and only if

k exceeds his valuation. If the consumer does not renounce, then the monopolist will bear

a cost of c to provide the service.

3Although little apparent from our presentation, there is also an additional aspect of the incentive
problem which is related to u000: That is, if both � and � are privately known to the agent, then a greater u000

will also re�ect the fact that adjacent incentive constraints are tighter than other incentive constraints. For
instance, reporting �1 + e�1 is more attractive to a type �1 + e�2 than reporting �2 + e�2. A complete analysis
is developed by Danau and Vinella [3], who show that the study of the optimal delegation in this context is
lengthy and complicated, unless u000 is considered.

4Remarkably, the results in the delegation example here proposed extend naturally to a problem of
monopoly regulation, if u (�) is interpreted as consumer surplus. Accordingly, in that framework, u0 (�)
would measure the consumer willingness to pay for the good sold by the monopolist and, hence, the (inverse)
demand for the good. Variations in u000 would represent variations in the price elasticity of the market demand
rather than variations in the preferences of a risk averse decision maker. One would �nd that 
 = 1="p, where
"p is the constant price elasticity of the demand. (A: is this still ok after we arranged slightly computations
in the Sequential paper? perhaps better check) Therefore, a greater value of u000 would be associated with
a less elastic demand and the results we presented in the example follow accordingly.
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Essentially, in Courty and Li [2], the economic issue is how to choose the future dis-

bursement k and the current revenue a; which is more in line with the classical savings-

consumption model than with the issue of our interest. However, because this problem

belongs to the kind of principal-agent models considered in the previous example, for the

sake of completeness, we show that u000 plays a role in the solution adopted by the principal

also in this case. To that end, we restrict attention to the case of symmetric information

between players.

Whereas Courty and Li [2] and more recent studies assume that the monopolist is risk

neutral, we consider a risk averse monopolist, whose utility u (�) is expressed as a function
of money, as de�ned above. The total bene�t of the monopolist is

u (a)� vu (k)� (1� �)u (c) ;

where � is the probability of a high valuation, namely � > 0; (1� �) is the probability of
a low valuation, namely 0, and the reimbursement k is supposed to take values in (0; �)

at optimum. Under symmetric information, if the risk neutral consumer has zero outside

opportunity, then the monopolist chooses a �xed payment such that

a (k) = (1� �) k + ��:

The �rst-order condition of the maximization problem of the principal is given by

u0 (k + � (� � k)) � �

1� � u
0 (k) :

For a positive solution to exist, it is necessary and su¢ cient that the high valuation is

less likely than the low valuation: v < 1=2. Otherwise, the monopolist will choose a = ��

without conceding any reimbursement. Accordingly, we take � < 1=2: Then, k > 0 involving

that a (k) > ��. Replacing u0 (y) = y�
, we obtain the following solution:

[k + � (� � k)]�
 = v

1� vk
�
 , k� =

���
1�v
v

� 1

 � (1� �)

;

which is lower than � and con�rms our previous hypothesis. We see that dk�=d
 > 0.

Hence, the greater u000 is the higher the value k� that the solution takes. This is interpreted

as follows. A more prudent monopolist is more prone to grant a reimbursement to the

consumer in a later stage to be able to appropriate a higher certain payment a(k�) today.

5.3 Investment timing and prudence

We now come back to the simple capacity investment model presented in section 3,

assuming that the value of x evolves stochastically as a simple random walk. We take
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xt+1 2 fxt � �; xt + �g, 8t, where t 2 N+ indexes the period. We also assume that there
is a discount factor between each two periods, namely � 2 (0; 1). The �exibility gain from
increasing the delay of investment from t to t+ 1 is written as

wt (xt) = �E [u (y (xt + e�))� (xt + e�) y (xt + e�)]� (u (y (xt))� xty (xt)) :
Assuming that, at a generic time t, the investment has not been made yet, the investor will

delay the investment if and only if wt (xt) > 0. In other words, the investment is made at

the �rst time t at which xt is such that wt (xt) � 0. The bigger wt (xt) is the more the

investment is expected to be delayed over time. We will check the relationship between

wt (xt) and 
 to assess the role that u000 plays in the investment timing decision.

Using the �rst-order condition u0 (y (x)) = x and u0 (y) = y�
 we obtain y (x)�
 = x ,
y (x) = x�

1

 . Hence,

u (y (x)) = u
�
x�

1



�
=
x�

1�




1� 
 :

Therefore,

wt (xt) =
�


1� 
E
h
(� + e�)� 1



+1
i
� 
�

� 1�




1� 

and wt (xt) > 0 if and only if

E
h
(� + e�)� 1�





i
>
��

1�




�
,
�

�

� + �

� 1�




+

�
�

� � �

� 1�




>
2

�

Computing

d

d


"�
�

� + �

� 1�




+

�
�

� � �

� 1�




#
= � 1


2

24ln� �

� + �

�( �
�+� )

1�


 �

�

� � �

�( �
��� )

1�



35 ;

we see that it is positive. Hence, the more convex the third derivative of the utility function

is, the more likely it is that the investment decision will be delayed.5

6 Conclusion

We showed that the notion of prudence extends to situations the literature has not

considered so far. Speci�cally, provided that an individual prefers future outcomes to current

ones, the third derivative of the utility function (and, implicitly, the degree of prudence) is a

5Noticeably, if the investment has the nature of a preventive e¤ort, then, using the same utility function
as in the applications we consider, one should �nd that, with u000 (�) > 0, the �exibility gain is negative, as in
Proposition 3. We did not develop this case because the optimal e¤ort cannot be expressed explicitly, given
that the �rst-order condition is a complex polinomial function. However, as from Proposition 3, prudence
is a su¢ cient condition for the �exibility gain to be negative in that case, regardless of the utility function
speci�cally considered.
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measure of that preference. This is explained by the fact that when information acquisition

arises over time, downside risk is lower as decisions are delayed.
The comparisons with the literature we developed and the applications we proposed

show why it is useful to consider the broader interpretation of prudence we identi�ed. In

principal-agent models, it may be necessary to know the third derivative of the surplus

function of the principal in order to identify which incentive constraints are tighter and may

be binding. In investment timing problems, prudence induces investment delay. However,

when the nature of the investment is that of a preventive e¤ort, a prudent individual has a

strict preference for immediate investment. These applications helped us illustrate that the

notion of prudence can be employed along a novel research direction.
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