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Abstract

Riordan and Sappington (JET, 1988) show that in an agency relationship in which
the type of the agent is correlated with a signal that is observed publicly ex post, the
principal may attain �rst best (full surplus extraction and e¢ cient output levels) if she
o¤ers the agent a lottery such that each type is rewarded for one signal realization and
punished equally for all the others. Gary-Bobo and Spiegel (RAND, 2006) show that
this kind of lottery is most likely to be locally incentive-compatible when the agent is
protected by limited liability. In this paper we investigate how the principal should
construct the lottery to attain not only local but also global incentive-compatibility. We
�rst assess that the main issue with global incentive-compatibility rests with intermediate
types being potentially attractive reports to both lower- and higher-order types. We then
show that a lottery including three (rather than two) levels of pro�t is most likely to
be globally incentive-compatible under limited liability, if local incentive constraints are
strictly satis�ed. We identify conditions under which �rst best is implemented and pin
down the optimal distortions when those conditions are violated. In particular, when the
�rst-best allocation is locally but not globally incentive-compatible, output distortions
are induced but no information rent is conceded to the agent.
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1 Introduction

There is now notable work on contractual design in agency problems with correlated in-

formation. The pioneering studies, which we owe to Myerson [9], Crémer and McLean [2]

(henceforth, CM), McAfee and Reny [8] and Riordan and Sappington [10] (henceforth, RS),

identify su¢ cient conditions for full surplus extraction in settings in which the agent is not

protected by limited liability. When such conditions are satis�ed, the principal designs a pay-

ment scheme including a lottery related to the distribution of an external signal to be realized

ex post and correlated with the private information of the agent. All surplus is extracted from

the agent by embedding in the lottery both rewards and punishments associated with the var-

ious possible signal realizations. However, a serious drawback of these mechanisms is that the

punishments may be too high for the mechanisms to be viable when the agent is protected by

limited liability.

Demougin and Garvie [3] and Gary-Bobo and Spiegel [5] (henceforth, GBS) investigate

optimal screening under limited liability in the presence of correlated information. Demougin

and Garvie [3] only consider the case in which the signal is binary. GBS show that this is without

loss of generality when the principal is only concerned with local incentive-compatibility, in

addition to limited liability. In that case, indeed, the principal is better o¤ if she o¤ers a

lottery that admits only two levels of pro�t, a reward and a punishment. If more than two

signals are available, then the reward is associated with only one signal and the punishment

with all the others. However, it is not obvious that this is still the best strategy in environments

in which global incentive-compatibility is not implied by local incentive-compatibility. Hitherto

the literature has not completely clari�ed which exact lottery the principal should adopt when

incentive-compatibility may be di¢ cult to attain not only locally but also globally and the

agent is protected by limited liability. Here is the contribution of our study.

RS show that a lottery yielding a reward for a single signal realization is optimally adopted

when the cost function of the agent is less concave in type than the conditional likelihood

function of the reward signal. GBS focus on situations in which the cost function is strictly

convex in type whereas the conditional likelihood function of the reward signal is concave in

type, which are su¢ cient conditions for �rst-best implementation in light of the results of RS.

In this study, restrictions are imposed neither on the curvature of the cost function nor on that

of the conditional likelihood function of the signal to which the highest pro�t is associated.

On the one hand, in so doing, we allow for the total cost function to be concave in type,

as may well be the case, for instance, if the agent has an a¢ ne cost function such that the

�xed cost is inversely related to the privately known marginal cost.1 On the other hand, we

admit that there exist two signals (rather than only one, as in GBS) which, taken together

with any of the other available signals, satisfy the monotonic likelihood property. Although we

reinforce the assumption made by GBS in this respect, we nonetheless require the monotonic

1This is highly plausible in regulated sectors, in which low marginal costs are often associated with high
overhead costs (Maggi and Rodriguez-Clare [7]). Alternatively, one could think of better outside opportunities
as being associated with more e¢ cient production (Lewis and Sappington [6]).
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likelihood property, which is familiar in mechanism design, to hold only in a "partial" sense,

not necessarily in a complete sense. With this approach we can search for the best lottery

that the principal could employ to implement �rst best under limited liability. Our results will

depend on how the shape of the cost function compares with that of the conditional likelihood

function, as in RS, but the family of cost functions for which full surplus extraction is at hand is

likely to be richer than in the one-reward lottery scheme. More speci�c results are summarized

hereafter.2

Overview of the results

We �rst show that the main di¢ culty with global incentive-compatibility is rooted in the

way in which the lotteries targeted to the intermediate types should be designed for those

types to represent attractive reports neither to lower- nor to higher-order types. This is better

understood if it is considered that the compensation to the agent blends together a �xed

payment related to the cost of production and a lottery related to the ex-post realization of the

signal. On the one hand, lower-order types exaggerating information gain on the �xed payment

but lose in terms of lottery; on the other, higher-order types under-stating information gain

in terms of lottery but lose on the �xed payment. This double circumstance constrains the

principal when designing the lotteries for the intermediate types.3

Second, when local incentive-compatibility is attained under limited liability, the lottery

that is most likely to be globally incentive-compatible at the �rst-best allocation includes three

distinct levels of pro�t for each type of agent. One pro�t is a reward associated with the signal

displaying the highest likelihood ratio; a second pro�t is a punishment associated with all other

signals but that displaying the lowest likelihood ratio; and the third pro�t is an intermediate

pro�t associated with this latter signal. This articulated structure of the lottery is feasible

because the principal enjoys some �exibility when the liability of the agent is su¢ ciently high

to be able to attain local incentive-compatibility with a lottery other than the one of GBS.

Speci�cally, the losses in�icted to the intermediate types can be di¤erentiated across signal re-

alizations in such a way that over-statement by lower-order types is more easily prevented, yet,

without making under-statement signi�cantly more attractive to higher-order types. This fa-

cilitates the task of the principal to impede that intermediate types be conveniently announced

by any other type.

Third, once the lottery which is most likely to attain global incentive-compatibility under

limited liability is characterized, a cut-o¤ level of liability is determined, which dictates whether

or not �rst best is implementable. This cut-o¤ value depends on how the shape of the cost

function with respect to type compares with the shape of the likelihood function of the reward

2In GBS the exogenous signal is taken to a¤ect the cost of production, rather than being purely informational
about that cost, as is usually assumed by the literature. We do not follow the approach of GBS to avoid
introducing complications that are unnecessary to the purpose of our study.

3From the proofs of Corollary 1.4 and 1.5 of RS it emerges that �rst best is implementable once su¢ cient
conditions are introduced under which there is no con�ict between incentive constraints. However, no study
has thereafter clari�ed why such a con�ict may arise and how it can be eliminated under limited liability.
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signal. Put it di¤erently, the exact family of cost functions for which �rst best is viable is

determined, given the level of liability. For instance, �rst best is at reach if the cost function of

the agent is concave in type, rather than being convex as in GBS, but the degree of concavity

is not too pronounced relative to that of the likelihood function of the reward signal.

Our fourth �nding concerns situations in which the liability of the agent is too low for the

principal to induce truthtelling without distortions, and hence for the �rst-best allocation to

be e¤ected. We show that the structure of the optimal lottery in this second-best scenario does

not di¤er from that �gured out in the �rst-best setting. An important aspect is that the level of

liability which separates the regime under which local incentive-compatibility is attained from

that under which it is not, is also the level of liability which separates situations in which the

optimal lottery includes three levels of pro�t from those in which, as in GBS, it includes only

two levels of pro�t. Remarkably, in the former situations, inducing distortions in the volume

of output is the only instrument the principal can use to satisfy both upward and downward

incentive constraints, which are then binding. No type is assigned any information rent.

Related literature

First of all, our paper is related to Myerson [9], CM and McAfee and Reny [8], who consider

an environment in which a seller/principal auctions out an object to a number of potential buy-

ers/agents whose preferences (types) are privately known and correlated. In that environment,

the signals correlated with the type of each agent are generated endogenously by the reports

collected by the principal from the other agents. From those studies we know that the principal

retains all surplus in a Bayesian framework, for any unspeci�ed utility function of each agent,

if and only if the vector of conditional probabilities of the type of any agent, given the types of

the other agents, is linearly independent of the vector of conditional probabilities of the types

of the other agents. Whereas this result is very appealing in contractual design, it nonetheless

exhibits the aforementioned limit of inducing compensations that are potentially very low. It

may thus be di¢ cult to attain in practice.

A second line of research to which the paper is related is pioneered by RS. They consider sit-

uations in which the principal deals with only one agent whose private information is correlated

with some signal which is realized and publicly observed ex post. These are thus situations in

which the correlated signals are exogenous to the contractual relationship. However, provided

that the external signals play the same role as the private information held by other agents,

RS obtain a result similar to that derived by the �rst line of research. In addition, RS show

that, for some speci�c cost functions of the agent, full surplus extraction is at hand in spite

of the informational signals being less numerous than the possible types of the agent.4 More

precisely, whether or not the outcome is attainable depends on the relationship between the

characteristics of the cost function of the agent and the properties of the likelihood functions

4In CM the types of the agents (the potential buyers of the object sold by the principal) determine their
utilities. In RS, as in our study, the agent exerts an activity delegated by the principal and his type determines
his cost of production.
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of the signals. The most "parsimonious" lottery that the principal can design in this context

includes only two levels of pro�t. GBS show that the incentive scheme proposed by RS is most

likely to satisfy the limited liability constraints because the punishments are spread equally

among all signals but one. With our investigation we evidence that this is not necessarily the

best lottery the principal can use because there are circumstances under which it fails to mo-

tivate some types of agent to release information correctly. We then highlight how the lottery

should be amended to circumvent these di¢ culty.

Our work is also related to the study of Demougin and Garvie [3], who were the �rst to

analyze contractual design in situations in which correlated information becomes available ex

post and the agent is protected by limited liability. In their model, this may mean, �rst, that

the agent cannot be exposed to any loss, which is tantamount to imposing ex-post participation

constraints. Alternatively, the transfers from the principal to the agent cannot be negative. In

line with GBS, our approach is a generalization of the former kind of limited liability. We depart

from the analysis of Demougin and Garvie [3] by allowing for more than two informational

signals being available, which is essential for the results we draw.

As is well known, limited liability can alternatively be regarded as an extreme form of risk

aversion. With that interpretation, our study is also related to the literature on full surplus

extraction in agency problems with correlated information and risk aversion on the agent�s

side. Within this literature, Eso [4] considers an auction in which the auctioneer/principal

faces two potential buyers/agents, both risk averse. Their privately known valuations of the

object o¤ered for sale are correlated and can take only two values. By contrast, we develop the

analysis considering a richer set of types. This extension enables us to capture the important

circumstance that incentive-compatibility is problematic essentially because intermediate types

may potentially attract false reports from both below and above.

1.1 Outline

The reminder of the article is organized as follows. Section 2 describes the model. Section

3 presents the �rst-best analysis. We �rst look at a discrete number of types and then allow

for a continuum of types. In Section 4, we investigate the second-best setting in which the

level of liability is too low, or the cost function too concave in type, to implement the �rst-best

allocation. Section 5 concludes. Mathematical proofs are relegated to an appendix.

2 The model

A principal, P, makes a contractual o¤er to an agent for the production of a good (or

service). They are both risk neutral. Consumption of q units of the good yields a gross

utility of S (q) : The function S (�) is twice continuously di¤erentiable and such that S 0 (�) >
0; S 00 (�) < 0; S (0) = 0 and the Inada�s conditions are satis�ed. The cost of producing q

units amounts to C (q; �) ; where the "type" � parametrizes the productivity of the agent. A
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lower value of � involves a lower total cost for any given q and will be referred to as a lower-

order (more e¢ cient) type. The function C (�; �) is twice continuously di¤erentiable in either
argument with derivatives dC (q; �) =dq � Cq (q; �) > 0; (dC (q; �) =d�) � C� (q; �) > 0 and

(d2C (q; �) =dqd�) = Cq� (q; �) > 0; the latter meaning that less e¢ cient types have higher

marginal costs of production. The agent receives a payment of t for the supply of q units of

the good.

In the contracting stage, the agent knows his type whereas P does not. It is commonly

known that � is drawn from the support � �
�
�; �
�
; where � > � > 0 with continuously

di¤erentiable density function f (�) and cumulative distribution function F (�) : Alternatively,

� is known to take values in the discrete set �T � f�1; :::�Tg ; where T is the number of types.
This alternative scenario will sometimes be considered for analytical and expositional purposes;

it will also be useful to present previous �ndings of the literature and develop comparisons.

Notation will be adapted accordingly whenever necessary.

The type of the agent is correlated with a random signal s; which is realized and publicly

observed ex post, i.e., after the contract is drawn up and the level of output is determined (or

the output is produced). The signal is "hard" information involving that a legally enforceable

contract can be signed upon.5 We take the signal to be drawn from the discrete support

N � f1; ::; ng ; where n � 2: The probability that signal s is realized conditional on the agent�s
type being � is ps (�) : We assume that ps (�) > 0 8s 2 N and that the function ps (�) is
twice continuously di¤erentiable for all values of �; with �rst and second derivative respectively

denoted (dps (�) =d�) � p0s (�) and
�
d2ps (�) =d�

2
�
� p00s (�) :We also assume that, for any triplet

of signals f1; s; ng ; the following monotonicity property is satis�ed:

p1 (�)

p1 (�
0)
>
ps (�)

ps (�
0)
>
pn (�)

pn (�
0)
; 8� > �0; 8s 6= 1; n: (1)

The Revelation Principle applies and P o¤ers a menu of allocations fq (�) ; ts (�)g8�;8s ; where
q (�) is the quantity an agent of type � is required to produce and ts (�) is the transfer he is

assigned when signal s is realized. The quantity is not conditioned on the signal because it

is chosen (or the output is produced) prior to the signal realization. The net surplus of P is

S(q (�))� ts (�) : Denote e�s (�0 j� ) � ts (�0)� C (q (�0) ; �) the pro�t an agent of type � obtains
when he announces �0 to P. Also let �s (�) = e�s (� j� ) so that we can write:

e�s (�0 j� ) = �s (�0) + C (q (�0) ; �0)� C (q (�0) ; �) : (2)

Further denote � (�) � f�s (�)g8s the lottery that the agent is faced with. We shall say that
he receives a reward if �s (�) > 0; he incurs a punishment if �s (�) < 0. Before proceeding to

the analysis, it is useful to remark that (2) would be the same if ts (�) were to include a �xed

5For instance, in regulatory settings, the signal can be the behaviour or the market performance of another
�rm, operating either in the same sector or in an analogous sector placed in a neighboring economy, which
conveys information about production costs. In other contexts, the signal can be the outcome of an audit of
the activity run by the agent.
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component related to the type and a stochastic component conditional on the signal realization,

as considered by Bose and Zhao [1]. Consistent with this, the programme of P presented below

only depends on the pro�ts rather than on the exact structure of the transfers assigned to the

various types when the di¤erent signals are realized.

2.1 The programme of the principal

Referring to the pro�t �s (�) rather than to the transfer ts (�) with a standard change of

variable, the programme of P is formulated as follows:

Max
fq(�);�s(�)g8�

W �
Z �

�

nX
s=1

(S(q (�))� C (q (�) ; �)� �s (�)) ps (�) dF (�)

subject to

Es [�s (�)] � 0; 8� (PC)

Es [�s (�)] �
nX
s=1

�s (�
0) ps (�) + C (q (�

0) ; �0)� C (q (�0) ; �) ; 8�; �0 (IC)

�s (�) � �L; 8�; 8s: (LL)

(PC) is the participation constraint whereby an agent of type � incurs no loss in expectation.

(IC) is the incentive-compatibility constraint whereby he is unwilling to report �0 6= �: (LL) is
the limited liability constraint which ensures that the maximum loss to which he is exposed

does not exceed L > 0 regardless of the signal realization.

3 First best

The �rst part of our study will be devoted to investigate under what conditions and in

which way P implements the �rst-best allocation. This is de�ned by the optimality condition:

S 0(q (�)) = Cq (q (�) ; �) ; 8�; (3)

together with the rent-extraction constraint:

nX
s=1

�s (�) ps (�) = 0; 8�: (4)

Throughout this section, to save on notation, q (�) will indicate the �rst-best quantity for an

agent of type � and �s (�) the pro�t assigned for the production of that quantity. We further

denote � (�) the set of lotteries � (�) ; the elements of which satisfy (4).
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3.1 Previous �ndings

Before turning to the analysis, it is useful to summarize the previous �ndings on �rst-best

implementation in settings with correlated information.

RS Assume that �t takes values in the discrete set �T ; that C (q; �t) is convex in �t and that

9i 2 N such that pi(�t) is increasing and concave in �t. If L ! 1; i.e. the agent can be
exposed to unbounded losses, then � (�t) is not empty for any �t: After presenting this result

in Corollary 1.4, RS show that P e¤ects the �rst-best allocation by adopting the binary lottery

�i (�t) 8�t; de�ned as follows for any t > 1 :

�i (�t) = [C (q (�t) ; �t)� C (q (�t) ; �t�1)]
1� pi(�t)

pi(�t)� pi(�t�1)
(5)

�s (�t) = � [C (q (�t) ; �t)� C (q (�t) ; �t�1)]
pi(�t)

pi(�t)� pi(�t�1)
; 8s 6= i: (6)

In Corollary 1.5, RS further show that if n = 2; types are drawn from the discrete set �3 and

pi(�3) > pi(�2) > pi(�1); then the lottery �i (�t) belongs to �(�t) if and only if:

C (q; �2)� C (q; �1)
C (q; �3)� C (q; �2)

� pi(�2)� pi (�1)
pi (�3)� pi(�2)

: (7)

This is ensured if the cost function is less concave in type than the conditional probability of

signal i:

GBS Take C (q; �) to be convex in � and pi(�) to be increasing and concave in � for some

i 2 N: Moreover, i = argmax
s2N

p0s(�)
ps(�)

; 8�: That is, among all possible signals and for all possible
types, signal i is the one the probability of which displays the highest rate of change as type

increases. Notice that under this assumption the condition that RS impose on signal i in their

Corollary 1.5 is satis�ed as well. Then, among all the lotteries belonging to � (�) ; the one

de�ned here below is the most likely to satisfy (LL):

�i (�) = C� (q (�) ; �)
1� pi(�)
p0i (�)

(8)

�s (�) = C� (q (�) ; �)
pi(�)

�p0i (�)
; 8s 6= i: (9)

This is the counterpart of the lottery �i (�t) �gured out by RS, for the case of a continuum of

types.6 Being based on (9), we see that the �rst-best allocation is implemented if and only if:

C� (q (�) ; �)
pi(�)

p0i (�)
� L; 8�: (10)

6With a slight abuse of notation we will use the notation �i (�) to indicate this lottery regardless of whether
types are drawn from a discrete set or a continuum range.
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CM Take �t 2 �T and L!1: As long as the vectors p (�t) are linearly independent across
types, � (�t) is non-empty for all �t: This follows from Farkas�lemma, which implies that there

exists a n�dimensional vector h (�t) 8�t 2 �T ; such that the following two conditions hold:

nX
s=1

hs (�t) ps (�t) = 0; 8�t 2 �T (11)

nX
s=1

hs (�t) ps (�t0) < 0; 8�t; �t0 2 �T : (12)

By setting �s (�t) = ths (�t) ; 8s; 8t; and choosing the "scaling" parameter t arbitrarily big,
P extracts all surplus from type �t and no incentive to mimic �t is triggered for any other type.

First best is beyond reach if there exists some type �t for which a vector h (�t) satisfying (11)

and (12) does not exist.7

In good substance, RS highlight that, as long as the agent can be imposed unlimited

punishments, �rst best is possibly at hand even when the set of informational signals includes

only two elements. As is evident from the de�nition of �i (�t) ; the agent�s gain only depends

on whether signal i is realized, rather than any other signal, regardless of how rich the subset of

other signals is. From GBS we further retain that any other lottery belonging to� (�) includes

an element the value of which is below that of (6), involving that it is less likely to satisfy (LL).

Under assumption (1), i = 1 in our framework. The best known result in agency problems with

correlated information is perhaps that of CM, who show that the �rst-best outcome is attained

if the vectors of conditional probabilities of the signals are linearly independent. Importantly,

this result is obtained regardless of the properties of the cost function. By setting rewards

and punishments arbitrarily high, any report can be made unattractive to any other type.

However, high punishments are unfeasible when the agent is protected by limited liability. One

then needs to consider the properties of the cost and the probability functions to ascertain

whether there exists some lottery that implements �rst best under limited liability, consistent

with the analysis developed by GBS.

Our goal is to extend the analysis beyond that of GBS and investigate whether �rst best

is attainable when (7) and (10) are not jointly satis�ed and what lottery should be adopted

in that case. Indeed, under assumption (1), (10) is most likely to hold for signal i = 1 but

the associated lottery �1 (�) may fail to comply with (7) as required by RS. Whereas the

assumption that some signal displays the highest likelihood ratio for all types is similar to that

introduced by GBS, the assumption that some other signal displays the lowest likelihood ratio,

also embodied in (1), is made for the purpose of our study. Overall, the conditions in (1) entails

that the full-rank condition of CM must be satis�ed for the extreme types but not necessarily

7The "only if" proof of CM shows that if the vector h(�) does not exist, then it is impossible to prevent all
types but � from mimicking type �: Notice however that the full-rank condition is not necessary for all types.
In particular, it does not need to hold for type �: This paves the way to the results drawn in the study of RS,
in which �rst-best implementation does not necessarily depend on the full-rank condition. Bose and Zhao [1]
show that Proposition 1 in RS implies that �rst best might be e¤ected when the full-rank condition is violated.
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for the intermediate types.8 In this respect, our analysis diverges from that of CM and comes

closer to that of RS and GBS.

3.2 Three types and two or three signals

Before exploring the general setting with a continuum of types, it is useful to consider the

case where types are drawn from the discrete set �3 and are such that �1 < �2 < �3: After

looking at the basic scenario with a binary signal, we admit three signals in preparation to the

subsequent analysis. Mathematical derivations are relegated to Appendix B.

3.2.1 Two signals

We take N = f1; 2g and explore how the pro�ts �1 (�t) and �2 (�t) of the generic type �t
should be set. To that end, it is useful to proceed as follows. First construct a lottery that

ensures full surplus extraction and identify the expression of the two pro�ts included in that

lottery. Then verify what changes the two pro�ts should undergo when switching to a new

lottery that preserves full surplus extraction.

Consider any lottery � (�t) 2 �(�t) under which �2 (�t) < 0 < �1 (�t) : Knowing that full
surplus extraction requires the expected value of the lottery to be zero, we can write �1 (�t) =

��2 (�t) p2(�t)p1(�t)
to express the lottery in terms of �2 (�t) only. The same can be done with the

lottery that type �t0 is faced with when reporting �t: Knowing that the likelihood of signal s

conditional on the type being �t0 is ps (�t0) ; one component of this lottery is �2 (�t) p2 (�t0) ;

the other component is ��2 (�t) p2(�t)p1(�t)
p1 (�t0) : Taking � (�t0) to belong to �(�t) as well, type

�t0 faces a payo¤ of �2 (�t) p2 (�t)
�
p2(�t0 )
p2(�t)

� p1(�t0 )
p1(�t)

�
when reporting �t: This payo¤ is negative

if �t0 < �t; it is positive in the converse case. Therefore, a type below �t faces a lottery with

lower expected value whereas a type above �t faces a lottery with higher expected value when

cheating rather than telling the truth. This is explained by the fact that, under assumption

(1), the rate of increase/decrease of p1 (�) as type increases/decreases is higher than that of
p2 (�) :

p1(�t0)� p1 (�t)
p1 (�t)

<
p2(�t0)� p2 (�t)

p2 (�t)
; if �t0 < �t

p1(�t0)� p1 (�t)
p1 (�t)

>
p2(�t0)� p2 (�t)

p2 (�t)
; if �t0 > �t:

Under these conditions, when type �t0 reports �t < �t0 ; it faces a lottery with lower expected

value than if it were to tell the truth because, as compared to type �t; it is more likely to

draw signal 2 and less likely to draw signal 1: Conversely, when type �t0 reports �t > �t0 ; it

faces a lottery with higher expected value because, as compared to type �t; it is less likely to

draw signal 2 and more likely to draw signal 1: In addition to the lottery, the payo¤ of type �t0

8In Appendix A we show that, as long as (1) holds, p (�1) and p (�T ) do not lie in the convex hull generated
by the probability vectors of the other types. Moreover, there exist vectors p (�t) ; t 6= 1; T; which lie in the
convex hull generated by the probability vectors of the other types and do not violate (1).
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reporting �t includes the di¤erence between fake and real cost. Accordingly, the payo¤ of type

�t0 when reporting �t is given by:

�2 (�t) p2 (�t)

�
p2(�t0)

p2 (�t)
� p1(�t

0)

p1 (�t)

�
+ C (q (�t) ; �t)� C (q (�t) ; �t0) :

By looking at this payo¤, we can asses what incentivizes type �t0 to report �t: A type �t0 that

reports a higher type �t loses in terms of lottery but gains on the �xed payment obtained from

P because, in that case, C (q (�t) ; �t0) > C (q (�t0) ; �t0). On the opposite, a type �t0 that reports

a lower type �t loses on the �xed payment but gains in terms of lottery. Taking this into

account, one can identify the requirements that the pro�t targeted to type �t for some signal

realization must satisfy for the report �t to be unattractive to both lower and higher types. In

particular, the pro�ts assigned to the di¤erent types when signal 2 is realized must satisfy the

following conditions:

�2 (�1) � �
C (q (�1) ; �t0)� C (q (�1) ; �1)
p2(�1)

�
p1(�t0 )
p1(�1)

� p2(�t0 )
p2(�1)

� ; t0 = 2; 3; (13)

�C (q (�2) ; �3)� C (q (�2) ; �2)
p2(�2)

�
p1(�3)
p1(�2)

� p2(�3)
p2(�2)

� � �2 (�2) � �
C (q (�2) ; �2)� C (q (�2) ; �1)
p2(�2)

�
p2(�1)
p2(�2)

� p1(�1)
p1(�2)

� (14)

and

�2 (�3) � �
C (q (�3) ; �3)� C (q (�3) ; �t0)
p2(�3)

�
p2(�t0 )
p2(�3)

� p1(�t0 )
p1(�3)

� ; t0 = 1; 2: (15)

We see that, whereas it is easy to design lotteries such that none of the extreme types represents

an attractive report for the other types, it is possible to design a lottery with such features for

the intermediate type if and only if:

C (q (�2) ; �2)� C (q (�2) ; �1)
C (q (�2) ; �3)� C (q (�2) ; �2)

�
p1(�2)�p1(�1)

p1(�2)
� p2(�2)�p2(�1)

p2(�2)

p1(�3)�p1(�2)
p1(�2)

� p2(�3)�p2(�2)
p2(�2)

: (16)

The fact that type �1 gains on the �xed payment and loses on the lottery, whereas the

converse occurs for type �3; involves that there exist values of �2 (�2) such that both types �1
and �3 are discouraged from claiming �2 if and only if the ratio between the gain to type �1
and the loss to type �3 in terms of �xed payment does not exceed the ratio between the loss

to type �1 and the gain to type �3 in terms of lottery, as (16) shows. As the signal is binary,

p2 (�) = 1� p1(�) and one can rewrite (16) as (7), i.e. as the condition in Corollary 1.5 of RS.
Recalling the explanation of condition (7), the gain/loss ratio in terms of �xed payment does

not exceed the loss/gain ratio in terms of lottery if and only if the cost is less concave (more

convex) than the conditional probability of signal 1:9

Next consider the issue of limited liability. The compensation scheme must be designed so

9We formulate the condition identi�ed by RS as (7), rather than as the equivalent condition (16), because
this is useful to prepare the reader to the subsequent analysis with more than two signals.
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as to reconcile the attempt to prevent the agent from overstating type with the need to satisfy

(LL). That is, (LIC) should not con�ict with (LL). No con�ict arises, indeed, if it is possible

to set �2 (�2) and �2 (�3) su¢ ciently low to discourage lower types from over-reporting without

yet exposing the agent to excessively high punishments. That is, it must be the case that:

(C (q (�3) ; �3)� C (q (�3) ; �t0))
p1(�3)

p1(�3)� p1 (�t0)
� L; t0 = 1; 2 (17)

(C (q (�2) ; �2)� C (q (�2) ; �1))
p1(�2)

p1(�2)� p1 (�1)
� L: (18)

These two conditions are the counterpart of (10) in a setting with three types and two signals.

Overall, �rst best is at reach only if (16) (or, equivalently, (7)) holds jointly with (17) and

(18). As shown in Appendix B.2, (16) also implies that the extreme types are more attracted

by adjacent than non-adjacent types. Intuitively, because the lotteries that types �1 and �3
are faced with if announcing �2 are not too extreme when (16) holds, those types will prefer

the claim �2 to the claim �3 and �1; respectively. The bene�t of this is that both upward and

downward incentive constraints must be veri�ed locally only. Therefore, together with (17)

and (18), (16) is also su¢ cient for �rst-best implementation.

3.2.2 Three signals

We now take N = f1; 2; 3g : Proceeding as above, we assess that, for the �rst-best allocation
to be e¤ected in an incentive-compatible manner, the following conditions should hold:

�3 (�t) � �
C (q (�t) ; �t)� C (q (�t) ; �t0) + �2 (�t) p2(�t)

�
p2(�t0 )
p2(�t)

� p1(�t0 )
p1(�t)

�
p3(�t)

�
p3(�t0 )
p3(�t)

� p1(�t0 )
p1(�t)

� ; 8�t0 < �t (19)

�3 (�t) � �
C (q (�t) ; �t0)� C (q (�t) ; �t) + �2 (�t) p2(�t)

�
p1(�t0 )
p1(�t)

� p2(�t0 )
p2(�t)

�
p3(�t)

�
p1(�t0 )
p1(�t)

� p3(�t0 )
p3(�t)

� ; 8�t0 > �t:(20)

Also in this setting it would not be an issue to construct lotteries such that the extreme

types �1 and �3 do not represent attractive lies for any other type, whereas di¢ culties might

arise with the intermediate type �2:When the compensation to the agent can be conditioned on

three signals, rather than only two, the lottery admits one more level of pro�t. This provides

P with an additional instrument to lessen the con�ict between incentive constraints. The

necessary condition (16) is replaced by:

C (q (�2) ; �2)� C (q (�2) ; �1)
p3(�1)
p3(�2)

� p1(�1)
p1(�2)

� C (q (�2) ; �3)� C (q (�2) ; �2)
p1(�3)
p1(�2)

� p3(�3)
p3(�2)

(21)

� �2 (�2) p2(�2)

 p1(�3)
p1(�2)

� p2(�3)
p2(�2)

p1(�3)
p1(�2)

� p3(�3)
p3(�2)

�
p2(�1)
p2(�2)

� p1(�1)
p1(�2)

p3(�1)
p3(�2)

� p1(�1)
p1(�2)

!
:
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Assuming that the di¤erence in brackets in the right-hand side is negative, (21) is most relaxed

when �2 (�2) is decreased to the minimum: �2 (�2) = �L: If the equality �3 (�2) = �2 (�2) is

imposed, then the necessary condition is again (16), and it can then be impossible to decrease

�2 (�2) to �L. To see this, replace �2 (�t) = �L in (20) for the generic type �t and rearrange
to obtain:

�3 (�t) � �
[C (q (�t) ; �t0)� C (q (�t) ; �t)]� Lp1(�t0 )�p1(�t)p1(�t)

p3(�t)
�
p1(�t0 )
p1(�t)

� p3(�t0 )
p3(�t)

� � L:

This shows that, if L is su¢ ciently high for (17) (or (18)) to hold strictly, then it must be the

case that �3 (�t) > �L: Therefore, the con�ict between incentives is weakest when the pro�t
associated with signal 2 is di¤erent from that associated with signal 3: Turning back to type

�2; the condition under which the term that multiplies �2 (�2) is negative in (21), and hence it

is optimal to set �2 (�2) = �L; is given by:

p1(�2)�p1(�1)
p1(�2)

� p2(�2)�p2(�1)
p2(�2)

p1(�3)�p1(�2)
p1(�2)

� p2(�3)�p2(�2)
p2(�2)

>

p1(�2)�p1(�1)
p1(�2)

� p3(�2)�p3(�1)
p3(�2)

p1(�3)�p1(�2)
p1(�2)

� p3(�3)�p3(�2)
p3(�2)

: (22)

Notice that the left-hand side of (22) replicates the right-hand side of (16). Furthermore, the

left- and the right-hand side of (22) are just the same except that the likelihood of signal 2

in the former is replaced by that of signal 3 in the latter. These observations are useful to

interpret (22). If �2 (�2) is decreased, then by announcing �2 type �1 loses and type �3 gains in

terms of lottery. As long as the ratio between such loss and gain exceeds the ratio that would

result from a decrease in �3 (�2) rather than in �2 (�2) ; the best strategy is to set �2 (�2) = �L:
Obviously, in the converse case, the best strategy would be to set �3 (�2) = �L; instead. In
any case, the lottery that is most likely to implement �rst best departs from that pinned down

by GBS, which is such that �2 (�2) = �3 (�2) :

As in situations with a binary signal, provided that (21) holds, and hence one can construct

a lottery that is locally incentive-compatible, it is further necessary to take care of the possible

incentives to mimic non-adjacent types. However, as compared to situations with a binary

signal, it is now less obvious that the incentives to mimic adjacent types prevail on those to

mimic non-adjacent types. By extending our investigation to a continuum of types here below,

we show that, in fact, adjacent types are more attractive reports also in settings with more

than two types, which simpli�es the analysis signi�cantly.
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3.3 A continuum of types and a �nite number of signals

Consider a continuum of types and n � 2: In this framework, it is useful to state local and
global incentive constraints separately, as follows (see Appendix C for the derivation):

C� (q (�) ; �) =
nX
s=1

�s (�) p
0
s (�) ; 8� 2 � (LIC)

C(q(�); �)� C(q(�); �0) �
nX
s=1

�s(�)(ps(�)� ps (�0)); 8�0; � 2 �: (GIC)

These constraints ensure that report � is not attractive to any type �0 6= �; and hence it will be
chosen by type � only, when all surplus is extracted from the agent. According to (LIC), when

�0 is in a neighborhood of �; any bene�t from a lie is eliminated if P designs pro�ts for type �

such that the marginal change that type �0 would face in the lottery part of its compensation

after claiming � (
Pn

s=1 �s (�) p
0
s (�)) is just as great as the marginal change it would face in

the �xed payment (C� (q (�) ; �)) : Any deviation away from this rule would make the lie worth

for some neighboring types: for higher types, if the marginal change in the lottery is greater

than the marginal change in the �xed payment; for lower types, if the converse occurs. In

the same vein, (GIC) suggests that � is not an attractive report for a non-neighboring type

�0 if the �xed gain from cost exaggeration (C(q(�); �)� C(q(�); �0)) is lower than the lottery
loss (

Pn
s=1 �s(�)(ps((�)� ps (�

0))); when �0 < �; and if the �xed loss from cost understatement

(C(q(�); �0)� C(q(�); �)) exceeds the lottery gain (
Pn

s=1 �s(�)(ps (�
0) � ps(�))); when �0 > �

instead.

Next consider (LL), which must hold jointly with (LIC) and (GIC). To investigate the

impact of (LL), it is �rst useful to rewrite (LIC) as follows:

�n (�) =
C�(q(�); �)) +

P
s 6=1;n �s(�)ps(�)

�
p01(�)
p1(�)

� p0s(�)
ps(�)

�
�pn(�)

�
p01(�)
p1(�)

� p0n(�)
pn(�)

� : (23)

Given the pro�ts associated with the �rst n� 1 signals in the lottery assigned to type �; it is
impossible to prevent all neighboring types from reporting � unless �n(�) is set as in (23). Next

recall from GBS that the con�ict between local incentive-compatibility and limited liability is

most likely eliminated if the principal adopts the lottery �1(�) 8�. That lottery is obtained by
replacing �s(�) = �n(�) into (23) and saturating (PC). One can see the result of GBS as an

implication of the following lemma (the proof is in Appendix D).10

Lemma 1 Take n � 3; �(�) 2 �(�) 8� 2 �; and any triplet of signals fi; j; kg such that:

p0i(�)

pi(�)
>
p0j(�)

pj(�)
>
p0k(�)

pk(�)
; 8� 2 �: (24)

10To prove that punishments should all be equal for (LIC) to hold jointly with (LL), GBS consider three
di¤erent pro�ts and show that (LL) is most likely satis�ed if the two lowest pro�ts out of the three are adjusted
to become equal.
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Given �s(�) 2 �(�); 8s =2 fi; j; kg ; if a change is induced in �i(�); then the new lottery belongs
to �(�) only if changes are also induced in �j(�) and �k(�), in opposite directions.

Switching from �1 (�) to a di¤erent lottery also belonging to � (�) requires changing two

pro�ts �j (�) and �k (�) in opposite directions; otherwise (4) would be violated. As one pro�t

is decreased, (LL) is tightened. Recall from the discrete-type case that limited liability may

con�ict with local incentive-compatibility only for lower-order types, which might be willing

to overstate information. Provided that the probability of signal i changes at a greater rate

than that of signal j as type increases from some �� to � > ��; a lower value of �j (�) can

be compensated with a higher value of �i (�) ; without changing any other pro�t, in such a

way that type � still faces a lottery with the same expected value but type �� is now less

attracted by the lottery targeted to �: Analogous outcome could alternatively be induced by

increasing either �i (�) or �j (�) ; whereas �k (�) is decreased. Notice however that any such

pair of pro�t changes would make a report � more attractive to some higher type �+:11 As

there is a continuum of types, P cannot induce changes in only two of the pro�ts designed for a

certain type and still extract surplus from all types. This explains why P must induce changes

in three pro�ts when switching to a new lottery which also yields full surplus extraction. In

so doing, �j (�) and �k (�) must change in opposite directions. Remarkably, (24) imposes no

restrictions on the curvature of the probability functions so that pi (�) ; say, can be less or more
concave/convex than pj (�) :
Consider now the potential con�ict between (GIC) and (LL). Recall that Corollary 1.5 in

RS shows that, if 9i 2 N such that the cost function is less concave in type than the probability

function of signal i ((7) is satis�ed), then �rst best is attained by using the lottery �i (�) 8�:
In line with the result of RS, GBS rule out any di¢ culty with (GIC) by assuming that the cost

function is convex in type and that the likelihood function of signal i = 1 is concave in type.

The main question to our study is whether using the lottery �1 (�) is still the optimal

strategy when the cost function is more concave than the probability function of the reward

signal and (LL) is not binding when that lottery is adopted. More speci�cally, we aim at

understanding whether and how P could take advantage of the liability slack to make the

contract incentive-compatible. To that end, it is useful to decompose (GIC) into two distinct

conditions whereby some given report is unattractive to lower and higher types.

Lemma 2 Given (PC) and (LIC); (GIC) is rewritten as the following pair of conditions for
any given � :

C� (q (�) ; �) �
�
p01 (�)

p1(�)
� p

0
n (�)

pn(�)

�24C (q (�) ; �)� C �q (�) ; ���
pn(�

�)
pn(�)

� p1(�
�)

p1(�)

(25)

+
X
s 6=1;n

�s (�) ps(�)

0@ p1(�
�)

p1(�)
� ps(�

�)
ps(�)

p1(�
�)

p1(�)
� pn(�

�)
pn(�)

�
p01(�)
p1(�)

� p0S(�)
pS(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

1A35 ; 8�� < �;
11We let �� and �+ denote types respectively below and above �, but not necessarily limit values around �.
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and

C� (q (�) ; �) �
�
p01 (�)

p1(�)
� p

0
n (�)

pn(�)

�24C �q (�) ; �+�� C (q (�) ; �)
p1(�

+)
p1(�)

� pn(�
+)

pn(�)

(26)

+
X
s 6=1;n

�s (�) ps(�)

0@ p1(�
+)

p1(�)
� ps(�

+)
ps(�)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

�
p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

1A35 ; 8�+ > �:
Similarly to the discrete-type case, and for the reasons there explained, there is a potential

con�ict between (25) and (26). To avoid rise of the con�ict, it is necessary to have the following

condition satis�ed for each possible triplet
�
��; �; �+

	
:

C (q (�) ; �)� C
�
q (�) ; ��

�
pn(�

�)
pn(�)

� p1(�
�)

p1(�)

�
C
�
q (�) ; �+

�
� C (q (�) ; �)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

(27)

�
X
s 6=1;n

�s (�) ps(�)

0@ p1(�
+)

p1(�)
� ps(�

+)
ps(�)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

�
p1(�

�)
p1(�)

� ps(�
�)

ps(�)

p1(�
�)

p1(�)
� pn(�

�)
pn(�)

1A :
Therefore, one needs �rst to check whether, for each possible report �; there exists a lottery

such that (27) holds without violating (LL). Once this is ascertained, one further needs to verify

that such a lottery satis�es (25) and (26). As this is required for all possible pairs
�
��; �+

	
;

the analysis looks complex overall. The problem is tractable, in fact, thanks to the following

result.

Lemma 3 (27) is necessary and su¢ cient for (25) and (26) to hold.

Once it is established that it su¢ ces to check (27) to verify (25) and (26), it is possible to pin

down the optimal incentive scheme according to the properties of the cost and the likelihood

functions. To that end, it is useful to de�ne:

�s (�
0; �) � ps (�

0) + (� � �0) p0s (�0)
ps(�)

; 8�0 6= � 2 �; 8s 2 N;

where �s (�
0; �) = 1 if ps (�) is linear, �s (�0; �) < 1 if ps (�) is strictly convex, and �s (�0; �) > 1

if ps (�) is strictly concave. The more that �s (�0; �) diverges from 1; the higher that the degree

of convexity/concavity of ps (�) is 8�0 6= �: Hence, the magnitude of �s (�; �) is a measure of the
curvature of the probability function of signal s: Using this de�nition, one can show that if

�s (�
0; �)� �1 (�0; �)���p1(�0)p1(�)

� ps(�
0)

ps(�)

��� <
�n (�

0; �)� �1 (�0; �)���p1(�0)p1(�)
� pn(�

0)
pn(�)

��� ; (28)

then the term in brackets in the right-hand side of (27) is negative 8� such that �� � � � �+;
with at least one of these inequalities holding strictly (see the proof of Proposition 1 below in

Appendix G.1). Assuming that this is true, the lottery that is most likely to implement �rst
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best, denoted �� (�) ; includes the following list of pro�ts 8� 2 � :

��1 (�) =
C� (q (�) ; �)� Lp

0
n(�)
pn(�)

p1(�)
�
p01(�)
p1(�)

� p0n(�)
pn(�)

� � L (29)

��n (�) =
L
p01(�)
p1(�)

� C� (q (�) ; �)

pn(�)
�
p01(�)
p1(�)

� p0n(�)
pn(�)

� � L (30)

��s (�) = �L; 8s 6= 1; n: (31)

Proposition 1 Assume that n � 3 and that (28) holds. Then, �rst best is implemented if and
only if either:

C (q (�) ; �)� C
�
q (�) ; ��

�
C
�
q (�) ; �+

�
� C (q (�) ; �)

� p1(�)� p1(��)
p1(�

+)� p1(�)
; 8�; ��; �+ 2 �; �� < � < �+ (32)

and

L �
�
C (q (�) ; �)� C

�
q (�) ; ��

�� p1(�)

p1(�)� p1(��)
; 8��; � 2 �; �� < � (33)

or (32) is violated and:

L �

C(q(�);�)�C(q(�);��)
pn(��)
pn(�)

� p1(�
�)

p1(�)

� C(q(�);�+)�C(q(�);�)
p1(�

+)
p1(�)

� pn(�+)
pn(�)

�
P

s 6=1;n ps(�)

�
p1(�

+)
p1(�)

� ps(�+)
ps(�)

p1(�
+)

p1(�)
� pn(�+)

pn(�)

�
p1(�

�)
p1(�)

� ps(��)
ps(�)

p1(�
�)

p1(�)
� pn(��)

pn(�)

� ; 8�; ��; �+ 2 �; �� < � < �+: (34)

This proposition extends Proposition 2 of GBS, where condition (33) is required under the

assumption that the cost is convex in type, to the case where the cost is possibly concave in

type, as captured by condition (32) of Corollary 1.5 of RS, and, more importantly, to the case

where (32) does not hold jointly with (33) but �rst-best is still implemented.12 This result

is useful in that it draws a single condition to be satis�ed for �rst-best implementation when

(32) does not hold, a condition which depends on how liable the agent is and on the properties

of the cost and the likelihood functions. To interpret the result, it is �rst necessary to recall

that it was obtained by identifying the lottery �� (�) as being most likely to yield the �rst-best

outcome. It is then useful to go through the following corollaries.

Corollary 1 ��1 (�) > �
1
1 (�) ; �

�
n (�) > �

1
n (�) and �

�
s (�) < �

1
s (�) ; 8s 6= 1; n; 8�:

This corollary evidences in which way �� (�) departs from the lottery pinned down by GBS.

When the cost and the probability functions display the properties stated in Proposition 1, P

should rely on Lemma 1 and proceed as follows. Starting from �1 (�) ; she should raise the

pro�t associated with signal n; in addition to that associated with signal 1; and decrease the

12Notice that, as �� ! �; (33) reduces to (10) for i = 1; which is the exact formulation in GBS. We present
the condition as in (33) because this alternative formulation helps us stress that the necessity of the condition
only results from the incentives of lower-order types to exaggerate information.
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pro�ts associated with all the other signals. According to Lemma 1, P gains �exibility when

switching from �1 (�) to a new lottery in which the pro�t associated with signal 1 is raised and

opposite changes are induced in the pro�ts associated with two other signals. As explained

in the case with discrete types, it is convenient to increase the pro�t of type � in state 1 and

decrease it in some state s 6= 1 because type �� is then led to bear a greater loss when reporting
�: This is because p01(�)

p1(�)
> p0s(�)

ps(�)
; 8s 6= 1; involving that type �� will obtain less with a signal

that it is more likely to draw and more with a signal that it is less likely to draw. This process

can be replicated for signal 1 and other n � 2 signals with which pro�ts higher than �L are
initially associated. On the other hand, for one signal realization the pro�t must be increased

in order to weaken the incentive of type �� to exaggerate information. The remaining question

is thus for which signal realization, beside 1; the pro�t should be increased and for which ones

it should be decreased instead. Corollary 1 identi�es those signals.

Corollary 2 (25) is relaxed and (26) is tightened when �� (�) replaces �1 (�) :

This result formalizes the impossibility of lessening the global incentives both to overstate

and to understate information by switching from one lottery to another in �(�) 8�: However,
provided that (28) holds, when replacing �1 (�) with �� (�) the positive e¤ect of type ��

becoming less eager to claim � prevails on the negative e¤ect of type �+ becoming more eager

to do so. Indeed, under (28), one has:

p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

<

p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

; 8��; �; �+ 2 � : � 2
�
��; �+

�
; (35)

which is the counterpart of (22) in a setting with more than three types. Under (35), it is easier

to lessen the con�ict between the incentive constraints "from below" and "from above" if the

pro�ts of type � are decreased to �L for all signals but 1 and n; rather than for all signals
but n only. Remarkably, when (GIC) is not a concern as in the setting considered by GBS,

it su¢ ces to refer to the rate of change of the conditional probability to determine the lottery

that is most likely to eliminate the tension between local incentive-compatibility and limited

liability. However, this is no longer the only requirement to be met in terms of probabilities

as it comes to the incentive scheme that makes the tension between (GIC) and (LL) weakest.

The curvature of the function p (�) becomes important as well because the potential gains and
losses from the di¤erent lies depend on how the probabilities of the signals vary with type. The

next corollary lists the necessary and su¢ cient conditions for (28) to hold, and hence for (27)

to be weakest.

Corollary 3 For (28) to hold 8s 6= 1; n :
it is necessary that �s (�

0; �) < max f�1 (�0; �) ; �n (�0; �)g and su¢ cient that either

�s (�
0; �) < �1 (�

0; �) < �n (�
0; �)
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or

�n (�
0; �) < �s (�

0; �) < �1 (�
0; �) ;

it is necessary and su¢ cient that �n (�
0; �)� �s (�0; �) be "su¢ ciently large" when

�1 (�
0; �) < �s (�

0; �) < �n (�
0; �) ;

and that �n (�
0; �)� �s (�0; �) be "su¢ ciently small" when

�s (�
0; �) < �n (�

0; �) < �1 (�
0; �) :

Intuitively, because any decrease in �s (�) is compensated with an increase in both �1 (�)

and �n (�) (recall Lemma 1), the lottery �� (�) cannot be employed unless at least one between

p1 (�) and pn (�) is less convex / more concave than the conditional probability of any other
signal. If this is not the case, then incentives to understate information are too strong for

�� (�) to weaken (27). Speci�cally, (26) is tightened more than (25) is relaxed (recall Corollary

2). The remaining conditions listed in Corollary 3 are su¢ cient conditions on the degree of

concavity/convexity of the likelihood functions for (28) to hold.

In substance, as long as (LL) does not bind in �1 (�) at least for some �; the gain that

P obtains by moving away from that lottery in such a way as to take advantage of the slack

of (LL), resides in that global incentive-compatibility is reconciled with limited liability for a

wider family of cost functions. That is, �rst best is at hand in a richer variety of contractual

relationships. To see this, rewrite (34) as follows:

C (q (�) ; �)� C
�
q (�) ; ��

�
C
�
q (�) ; �+

�
� C (q (�) ; �)

(36)

�
p1(�)� p1

�
��
�

p1
�
�+
�
� p1(�)

+

0@ pn(��)
pn(�)

� p1(��)
p1(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

�
p1(�)�p1(��)

p1(�)

p1(�+)�p1(�)
p1(�)

1A

�
L

�
pn(��)
pn(�)

� p1(��)
p1(�)

�
C
�
q (�) ; �+

�
� C (q (�) ; �)

X
s 6=1;n

ps(�)

0@ p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

�
p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

1A ;
and observe that the last two terms in the right-hand side of (36), which are both positive, do

not appear in the right-hand side of (16).

Corollary 4 (34) is weaker than (16):

This involves that the restrictions on the cost function are weaker than the su¢ cient con-

dition identi�ed by RS. Hence, in situations in which the conditional probabilities satisfy the

assumptions previously made, P attains incentive-compatibility under milder conditions by

switching from �1 (�) to �� (�) ; 8� 2
�
�; �
�
: In fact, �� (�) is the lottery such that the re-

strictions on the cost function are weakest. Furthermore, this outcome is achieved only if the
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extent of the liability is higher than required by GBS.

Corollary 5 (34) implies (33) if and only if (32) is violated.

There is a simple conclusion to be drawn from this result. P can shift from �1 (�) to �� (�)

as long as (33) is slack, and she can take advantage of that slackness to relax the incentive-

compatibility constraints.

4 Second best

There are multiple possible departures from �rst best. One of them occurs when (32) is

satis�ed but (33) is not, which is the case GBS consider in their second-best analysis. In that

case, (LIC) cannot hold together with (LL) unless P deviates from the �rst-best allocation.

When it is (32) to be violated instead, one possibility is (28) not holding in Proposition 1

for at least one of the signals 1 and n; selected according to (1). However, intuition suggests

that the lottery which is most likely to attain �rst best will then have similar characteristics

to �� (�) ; except that a pair of signals other than f1; ng will be selected to satisfy (PC) and
(LIC), involving that (34) will be tighter. A more interesting possibility to consider is that

(34) does not hold, thus ruling out the second option in Proposition 1, which otherwise applies

when (32) is violated. This is the case we now turn to explore. To that end, for simplicity,

we take (34) to be violated by any triplet
�
��; �; �+

	
drawn from the feasible set. Notice that

because (34) implies (33) (Corollary 5), our investigation will also include the case considered

by GBS.

Resting on our �rst-best analysis, two questions arise naturally with regards to the case in

which (32) is violated and L is not great enough for (34) to hold. First, one would like to know

whether the optimal lottery still displays the feature that, for each type, all pro�ts but those

associated with signals 1 and n are equal. Second, one wonders whether there is any type to

be conceded an information rent at the second-best optimum.

We hereafter develop the second-best analysis focusing, to begin with, on three types, and

then on a continuum of types. We content ourselves with describing the main aspects of the

analysis, providing intuition about results. To keep notation parsimonious, we go on denoting

q (�) the quantity of a generic type � in the second-best setting, with the understanding that

it no longer refers to the �rst-best production level. Accordingly, � (�) will denote the pro�t

assigned for the production of that quantity.

4.1 Three types

Consider again a setting with three types such that �1 < �2 < �3 and assume that, as long

as P insists on the �rst-best allocation, the incentive-compatibility constraints whereby the

extreme types �1 and �3 are unwilling to claim �2 cannot be satis�ed at once. The issue is then

whether any of these types should be conceded an information rent to be motivated to tell the
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truth, and whether or not it is possible to extract all surplus from type �2: For simplicity, we

let the expected value of the lottery be R (�t) �
P

s � (�t) ps (�t) ; 8�t 2 �3. The incentive
constraints whereby types �1 and �3 are unwilling to claim �2 are given by:

�n (�2) pn(�2) �
R (�1)� p1(�1)

p1(�2)
R (�2)

pn(�1)
pn(�2)

� p1(�1)
p1(�2)

(37)

�
C (q (�2) ; �2)� C (q (�2) ; �1) +

P
s 6=1;n �s (�2) ps(�2)

�
ps(�1)
ps(�2)

� p1(�1)
p1(�2)

�
pn(�1)
pn(�2)

� p1(�1)
p1(�2)

�n (�2) pn(�2) �
p1(�3)
p1(�2)

R (�2)�R (�3)
p1(�3)
p1(�2)

� pn(�3)
pn(�2)

(38)

�
C (q (�2) ; �3)� C (q (�2) ; �2) +

P
s 6=1;n �s (�2) ps(�2)

�
p1(�3)
p1(�2)

� ps(�3)
ps(�2)

�
p1(�3)
p1(�2)

� pn(�3)
pn(�2)

:

There other two adjacent incentive constraints to be considered are those whereby type �2 is

willing to announce neither �3 nor �1 :

R (�2)�
p1 (�2)

p1(�3)
R (�3)� [C (q (�3) ; �3)� C (q (�3) ; �2)] (39)

�
X
s 6=1

�s (�3) ps(�3)

�
ps (�2)

ps(�3)
� p1 (�2)
p1 (�3)

�
� 0

R (�2)�
p1 (�2)

p1(�1)
R (�1)� [C (q (�1) ; �1)� C (q (�1) ; �2)] (40)

+
X
s 6=1

�s (�1) ps(�1)

�
p1 (�2)

p1 (�1)
� ps (�2)
ps(�1)

�
� 0:

At optimum, both (37) and (38) are binding. This is because, given the rents designed for

the three types, an increase in �n (�2) (associated with a decrease in �1 (�2)) strengthens the

incentive of type �1 to claim �2 to the same extent that it lessens the incentive of type �3 to

claim �2. In other words, the marginal cost of tightening (37) is exactly equal to the marginal

bene�t of relaxing (38). Moreover, the pro�ts designed for type �2 are optimally decreased to

�L for all signal realizations but 1 and n: The reason is that, as in the �rst-best setting, this
makes it least likely that (37) con�icts with (38). It follows that the second-best lottery is

structured either as �1 (�) or as �� (�) ; depending on whether or not (LL) is binding for the

intermediate type when signal n is realized (this does not entail that quantities will be set at

their �rst-best levels though). Interestingly, the value of L that separates the regime in which

�n (�2) = �L (and hence, the lottery is structured as �1 (�)) from that in which �n (�2) > �L
(and hence, the lottery is structured as �� (�)) is also the value that separates the regime in

which types �1 and �2 are assigned an information rent from that in which they are not. We

present these two cases below.
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4.1.1 Condition (33) is violated

Setting �s (�2) = �L; 8s 6= 1; n to reformulate (37) and (38) as:

R (�1) � p1 (�1)

p1(�2)
R (�2) + C (q (�2) ; �2)� C (q (�2) ; �1)� L

X
s 6=1;n

ps(�2)

�
ps (�1)

ps(�2)
� p1 (�1)
p1(�2)

�
+�n (�2) pn(�2)

�
pn (�1)

pn(�2)
� p1 (�1)
p1(�2)

�
R (�2) � p1(�2)

p1 (�3)

(
R (�3) + C (q (�2) ; �3)� C (q (�2) ; �2)� L

X
s 6=1;n

ps(�2)

�
p1 (�3)

p1 (�2)
� ps (�3)
ps(�2)

�
+�n (�2) pn(�2)

�
p1 (�3)

p1 (�2)
� pn (�3)
pn(�2)

��
;

we see that they are both weaker if type �2 is assigned the minimum pro�t of �L also when
signal n is realized. Besides, the latter constraint is further relaxed when R (�3) is downsized to

zero. With these optimal values, (37) and (38) ultimately collapse onto (39) and (40), and they

are all binding. The lottery has a similar structure to �1 (�) ; as we mentioned. To prevent cost

exaggeration, types �1 and �2 are given up some surplus. This result is not surprising in that

it is in line with the previous �nding of GBS. The information rents are respectively written

as:

R (�1) =
p1(�1)

p1 (�2)

�
C (q (�3) ; �3)� C (q (�3) ; �2)� L

p1 (�3)� p1 (�2)
p1 (�3)

�
(41)

+
p1(�1)

p1 (�2)

�
C (q (�1) ; �2)� C (q (�1) ; �1)� L

p1 (�2)� p1 (�1)
p1(�1)

�
and as:

R (�2) = C (q (�3) ; �3)� C (q (�3) ; �2)� L
p1 (�3)� p1 (�2)

p1 (�3)
: (42)

These expressions evidence that rents are conceded exactly because it would otherwise be

impossible to satisfy (LIC) without violating (LL) ((33) is violated at the �rst-best allocation).

4.1.2 Condition (33) holds

The novel aspect to our second-best analysis is that when (33) holds, and hence satisfying

the local incentive constraints is not an issue under limited liability, it is not necessary to

decrease �n (�2) to the minimum of �L to retain all surplus from the agent. A simple way to

see this is to check that both (41) and (42) are negative when (33) holds. Thus, by setting

�n (�2) strictly above �L; P can lessen the con�ict between (37) and (38) without tightening
(39) and (40), which eliminates the necessity to concede information rents. However, P does

need an instrument to ensure that (37) and (38) hold at once. This instrument will be the

quantity of type �2; which (37) and (38) depend upon. Speci�cally, P will need to adjust q (�2)
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so as to saturate (34), where �� = �1; � = �2; �
+ = �3: This requires lowering the di¤erence:

C (q (�2) ; �2)� C (q (�2) ; �1)
pn(�1)
pn(�2)

� p1(�1)
p1(�2)

� C (q (�2) ; �3)� C (q (�2) ; �2)
p1(�3)
p1(�2)

� pn(�3)
pn(�2)

below its �rst-best value. Hence, with Cq� (q; �) > 0; q (�2) will be distorted upwards at the

second-best optimum.

4.2 A continuum of types

We complete our analysis coming back to the setting with a continuum of types. Take three

types �� < � < �+ drawn from the feasible range �: Rewriting (37) and (38) with regards to

these types and letting both �� and �+ tend to �; (LIC) is reformulated as a �rst-degree

di¤erential equation (see Appendix H.2):

R0 (�) =
p01 (�)

p1(�)
R (�) +

X
s 6=1

�s (�) ps(�)

�
p0s(�)

ps(�)
� p01(�)

p1 (�)

�
� C� (q (�) ; �) : (43)

The solution to the di¤erential equation is given by the following expression of the rent:

R (�) = R
�
�
�
+

Z �

�

"
Cx (q (x) ; x)�

X
s 6=1

�s (x) ps(x)

�
p0s (x)

ps(x)
� p

0
1 (x)

p1(x)

�#
p1(�)

p1(x)
dx: (44)

Replacing (44) in the objective function of P, it becomes clear that, as long as no con�ict arises

between the incentive constraints whereby types �� and �+ are both unwilling to claim �; the

best is to set R
�
�
�
= 0 together with �s (x) = �L; 8s 6= 1: Then, the information rent of type

� amounts to:

R (�) =

Z �

�

p1(�)

p1(x)

�
Cx (q (x) ; x)� L

p01(x)

p1 (x)

�
dx; 8� 6= �; (45)

Further observe that �
Pn

s=2 �s
�
�+
�
ps
�
�+
�� p1(�)

p1(�+)
� ps(�)

ps(�+)

�
> 0 when �s (x) = �L 8s 6= 1:

One can show that, when this condition holds, if cost exaggeration is prevented in a neighbor-

hood of the true type, then it is prevented globally as well. Therefore, it su¢ ces to focus on

local incentive-compatibility. By insisting on the �rst-best allocation, P would be unable to

satisfy (LIC) without violating (LL) because L < Cx (q (x) ; x)
p1(x)
p01(x)

: She is thus forced to move

away from �rst best and concede some surplus to the agent, calling for quantity distortions in

turn. Once again, this result is identical to the �nding of GBS, although here it is obtained in

a di¤erent manner.

We are now left with exploring the case in which L is su¢ ciently high to allow for (LIC) to

hold together with (LL) at the �rst-best quantity and, yet, �rst best is beyond reach because

(34) is violated (recall that �rst-best implementation with our lottery requires that L be higher

than with the lottery of GBS). We saw that the di¢ culty rests with the con�ict between the

incentive constraints whereby higher- and lower-order types are unwilling to claim �: In light
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of this, we rearrange the incentive constraints whereby types �� and �+ are unwilling the claim

� as:

�n (�) pn(�)

�
R
�
��
�
� p1(��)

p1(�)
R (�)�

�
C (q (�) ; �)� C

�
q (�) ; ��

��
�
P

s 6=1;n �s (�) ps(�)

�
ps(��)
ps(�)

� p1(��)
p1(�)

�
pn(��)
pn(�)

� p1(��)
p1(�)

�n (�) pn(�)

�

p1(�+)
p1(�)

R (�)�R
�
�+
�
+
�
C (q (�) ; �)� C

�
q (�) ; �+

��
�
P

s 6=1;n �s (�) ps(�)

�
p1(�+)
p1(�)

� ps(�+)
ps(�)

�
p1(�+)
p1(�)

� pn(�+)
pn(�)

:

Extracting the following expression of �n (�) pn(�) from the local incentive constraint:

�n (�) pn(�) =

p01(�)
p1(�)

R (�)�R0 (�)� C� (q (�) ; �)�
P

s 6=1;n �s (�) ps(�)
�
p01(�)
p1(�)

� p0s(�)
ps(�)

�
p01(�)
p1(�)

� p0n(�)
pn(�)

;

we see that the incentive constraints of types �� and �+ are jointly satis�ed only if:

p1(�+)
p1(�)

R (�)�R
�
�+
�

p1(�+)
p1(�)

� pn(�+)
pn(�)

�
R
�
��
�
� p1(��)

p1(�)
R (�)

pn(��)
pn(�)

� p1(��)
p1(�)

� L
X
s 6=1;n

ps(�)

0@ ps(��)
ps(�)

� p1(��)
p1(�)

pn(��)
pn(�)

� p1(��)
p1(�)

�
p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

1A
�

0@C (q (�) ; �)� C �q (�) ; ���
pn(��)
pn(�)

� p1(��)
p1(�)

�
C
�
q (�) ; �+

�
� C (q (�) ; �)

p1(�+)
p1(�)

� pn(�+)
pn(�)

1A :
This condition generalizes (27) to the case in which the information rents may be positive. As

in the three-type setting, this condition is binding at optimum for any triplet
�
��; �; �+

	
: To

satisfy it, P does not need to concede an information rent to the agent. The optimal strategy is

to set R
�
��
�
= R (�) = R

�
�+
�
= 0 and distort output levels upwards for all but the extreme

types.

Proposition 2 If (33) is violated, then the second-best lottery is such that �s (�) = �L; 8�;
8s 6= 1: The agent is conceded an information rent given by (45) and the output level q (�) is
distorted downwards 8� 6= �: If (33) is satis�ed whereas (34) is violated, then the second-best
lottery is such that �s (�) = �L; 8�; 8s 6= 1; n and �n (�) > �L; 8�: No information rent is
conceded to the agent and the output level q (�) is distorted upwards 8� 6= �; �:

This result naturally extends the second-best result of GBS to the case in which (32) is

violated. The novel �nding that no information rent is conceded when (32) is violated is perhaps
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less intuitive. It emphasizes the fact that di¤erent results are possible when the departure from

�rst best is due to the presence of limited liability on the agent�s side rather than to violations

of the full-rank condition as considered by Bose and Zhao [1]. These authors assume that the

vector of conditional probabilities of some intermediate type is a linear combination of those

of the other types. Hence, the full-rank condition is violated and �rst best might not be at

reach. The intermediate type will then be extracted all surplus at optimum and at most one

of the extreme types will receive a rent. However, in that setting, restrictions on the lottery to

be adopted are due to the linear combination of probability vectors, whereas there is no bound

to the size of the pro�ts. When restrictions follow from limited liability, the agent is assigned

an information rent only if the losses he can be in�icted are so low that (33) is violated.

5 Conclusion

In a principal-agent model with correlated information and limited liability on the agent�s

side, we showed that focusing on the full-rank condition, the most common approach in the

literature, is not necessarily the best approach. Provided that there exist at least three informa-

tional signals, the conditional probabilities of two of them displaying a monotonicity property,

it is enough to verify that the liability of the agent is su¢ ciently high to ascertain whether or

not �rst best is implementable, which is very useful in applications. Whereas Bose and Zhao

[1] investigate �rst-best implementation when the full-rank condition does not hold, we proved

that the possibility of attaining the �rst-best outcome under limited liability is not necessarily

determined by the way in which the conditional probabilities of the signals depart from the

full-rank condition. Moreover, the existence of an exact relationship between the extent of the

liability and the admissible degree of concavity of the cost function (when this is not convex in

type) involves that the set of technologies for which �rst best is at reach under limited liability

is richer than that considered by GBS. Noticeably, these results would carry over if limited

liability were a constraint on the transfer payments to the agent rather than on his pro�ts, a

possibility considered by Demougin and Garvie [3]. The reason is that in either case limited

liability imposes restrictions on the total transfer from the principal to the agent, and not on

how that transfer is structured in terms of �xed and variable payment.13

As a general view, our study contributes to shedding light on how to attain incentive-

compatibility in situations in which the principal faces more than two possible types of agent

and there are more than two informational signals to be used in contractual design. Our

�ndings point to the conclusion that it might be with loss of generality to restrict attention

to the two-type case, or to a binary signal, when exploring principal-agent relationships with

correlated information and limited liability.

13Note however that results could be qualitatively di¤erent if limited liability were in the form of a bound to
the �xed and the variable transfer separately rather than to the overall compensation.
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A Full-rank condition and assumption (1)
Suppose that the vector p (�1) lies in the convex hull generated by the other probability

vectors. Then, there exists a vector (�2; :::; �T ); where �t 2 [0; 1] 8t 2 f2; :::; Tg and
PT

t=2 �t =
1; such that:

ps (�1) = �2ps (�2) + :::+ �Tps (�T ) ; 8s 2 N:

Let us use this for s = 1 and s 6= 1 together with (1). We get:

p1 (�1) = �2p1 (�2) + :::+ �Tp1 (�T )

, p1 (�1)

p1 (�2)
= �2

p1 (�2)

p1 (�2)
+ :::+ �T

p1 (�T )

p1 (�2)
> �2

ps (�2)

ps (�2)
+ :::+ �T

ps (�T )

ps (�2)
=
ps (�1)

ps (�2)
:

The inequality p1(�1)
p1(�2)

> ps(�1)
ps(�2)

contradicts (1). Similarly, suppose that there exists a vector

(�1; :::; �T�1); where �t 2 [0; 1] 8t 2 f1; :::; T � 1g and
PT�1

t=1 �t = 1; such that:

ps (�T ) = �1ps (�1) + :::+ �T�1ps (�T�1) ; 8s 2 N:
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Let us use this for s = 1 and s 6= 1 together with (1). We get:

p1 (�T ) = �1p1 (�1) + :::+ �T�1p1 (�T�1)

,
p1 (�T )

p1 (�T�1)
= �1

p1 (�1)

p1 (�T�1)
+ :::+ �T�1

p1 (�T�1)

p1 (�T�1)
< �1

ps (�1)

ps (�T�1)
+ :::+ �T�1

ps (�T�1)

ps (�T�1)
=

ps (�T )

ps (�T�1)
:

The inequality p1(�T )
p1(�T�1)

< ps(�T )
ps(�T�1)

contradicts (1).
Next take the vector p (�t) ; where t =2 f1; Tg ; to lie in the convex hull generated by the

probability vectors of the other types. This is equivalent to telling that there exists a vector
(�1; :::; �t�1; �t+1; :::; �T ); where �t 2 [0; 1] 8t 2 f1; :::; t� 1; t+ 1; :::; Tg and

P
t0 6=t �t0 = 1; such

that:

ps (�t) = �1ps (�1) + :::+ �t�1ps (�t�1) + �t+1ps (�t+1) + :::+ �Tps (�T )

,
ps (�t)

ps (�t+1)
= �1

ps (�1)

ps (�t+1)
+ :::+ �t�1

ps (�t�1)

ps (�t+1)
+ �t+1

ps (�t+1)

ps (�t+1)
+ :::+ �T

ps (�T )

ps (�t+1)
: (46)

By taking p (�t) such that

ps0 (�t)

ps0 (�t+1)

>
p1 (�t)

p1 (�t+1)

>
ps0 (�t)

ps0 (�t+1)
+ �1

�
p1 (�1)

p1 (�t+1)
� ps0 (�1)

ps0 (�t+1)

�
+ :::+ �t�1

�
p1 (�t�1)

p1 (�t+1)
� ps

0 (�t�1)

ps0 (�t+1)

�
; 8s0 6= 1;

both (1) and (46) are satis�ed. To see this, �rst use (46) for s = 1 to rewrite the second
inequality here above as:

�t+1
p1 (�t+1)

p1 (�t+1)
+ :::+ �T

p1 (�T )

p1 (�t+1)
>

ps0 (�t)

ps0 (�t+1)
+ �1

�
� ps0 (�1)

ps0 (�t+1)

�
+ :::+ �t�1

�
�ps

0 (�t�1)

ps0 (�t+1)

�
= �t+1

ps0 (�t+1)

ps0 (�t+1)
+ :::+ �T

ps0 (�T )

ps0 (�t+1)

Then use (46) for s0 to rewrite:

�t+1
p1 (�t+1)

p1 (�t+1)
+ :::+ �T

p1 (�T )

p1 (�t+1)
> �t+1

ps0 (�t+1)

ps0 (�t+1)
+ :::+ �T

ps0 (�T )

ps0 (�t+1)
;

which is true by assumption (1).

B Two and three signals
We �rst identify (GIC) for the general case with n signals and then specify it for 2 and 3

signals.
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B.1 (GIC) with n signals
Using e�s (� j�0 ) = ts (�)� C (q (�) ; �0) and �s (�) = e�s (� j� ) ; we have:

Es [e�s (� j�0 )] = nX
s=1

�s (�) ps (�
0) + C (q (�) ; �)� C (q (�) ; �0) :

Because full surplus extraction requires
Pn

s=1 �s (�) ps (�) = 0; this is rewritten as (GIC).
Further using

Pn
s=1 �s (�) ps (�) = 0, �1 (�) = �

Pn
s=2 �s (�)

ps(�)
p1(�)

; (GIC) is further rewritten
as:

C (q (�) ; �)�C (q (�) ; �0) �
X
s 6=1;n

�s (�) ps (�)

�
p1 (�

0)

p1(�)
� ps (�

0)

ps(�)

�
+�n (�) pn(�)

�
p1 (�

0)

p1(�)
� pn (�

0)

pn(�)

�
;

hence:

�n (�) pn(�)

�
p1 (�

0)

p1(�)
� pn (�

0)

pn(�)

�
� C (q (�) ; �)�C (q (�) ; �0)�

X
s 6=1;n

�s (�) ps (�)

�
p1 (�

0)

p1(�)
� ps (�

0)

ps(�)

�
:

(47)
Recall that, by assumption, p1(�

0)
p1(�)

> pn(�
0)

pn(�)
if and only if �0 > �: Using this equivalence for �� < �

and �+ > �; (47) is respectively rewritten as:

�n (�) pn(�) � �
C (q (�) ; �)� C

�
q (�) ; ��

�
pn(�

�)
pn(�)

� p1(�
�)

p1(�)

�
X
s 6=1;n

�s (�) ps (�)

ps(�
�)

ps(�)
� p1(�

�)
p1(�)

pn(�
�)

pn(�)
� p1(�

�)
p1(�)

(48)

and

�n (�) pn(�) � �
C
�
q (�) ; �+

�
� C (q (�) ; �)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

�
X
s 6=1;n

�s (�) ps (�)

p1(�
+)

p1(�)
� ps(�

+)
ps(�)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

: (49)

B.2 Two signals
When n = 2; (48) and (49) specify as (13), (15) and (14).
To check that the global incentive constraints are satis�ed, we need to verify that (13) and

(15) are respectively satis�ed for �t = �3 and �t = �1; if they are for �2: This is the case when:

C (q (�3) ; �3)� C (q (�3) ; �1)
C (q (�3) ; �3)� C (q (�3) ; �2)

�
p2(�1)
p2(�3)

� p1(�1)
p1(�3)

p2(�2)
p2(�3)

� p1(�2)
p1(�3)

(50)

C (q (�1) ; �2)� C (q (�1) ; �1)
C (q (�1) ; �3)� C (q (�1) ; �1)

�
p1(�2)
p1(�1)

� p2(�2)
p2(�1)

p1(�3)
p1(�1)

� p2(�3)
p2(�1)

: (51)
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Using p2 (�) = 1� p1 (�) ; these conditions are rewritten as:

p1(�3)� p1 (�1)
p1(�3)� p1 (�2)

� C (q (�3) ; �3)� C (q (�3) ; �1)
C (q (�3) ; �3)� C (q (�3) ; �2)

p1 (�2)� p1(�1)
p1(�3)� p1 (�1)

� C (q (�1) ; �2)� C (q (�1) ; �1)
C (q (�1) ; �3)� C (q (�1) ; �1)

:

Replacing p1(�3)�p1 (�1) with p1(�3)�p1 (�2)+p1 (�2)�p1 (�1) and C (q (�3) ; �3)�C (q (�3) ; �1)
with C (q (�3) ; �3)� C (q (�c3) ; �2) + C (q (�3) ; �2)� C (q (�3) ; �1) ; the two conditions further
become:

C (q (�3) ; �2)� C (q (�3) ; �1)
C (q (�3) ; �3)� C (q (�3) ; �2)

� p1 (�2)� p1 (�1)
p1(�3)� p1 (�2)

(52)

C (q (�1) ; �2)� C (q (�1) ; �1)
C (q (�1) ; �3)� C (q (�1) ; �2)

� p1 (�2)� p1(�1)
p1(�3)� p1 (�2)

; (53)

which are equivalent to (7) for speci�ed quantities q (�).

B.3 Three signals
Specify (48) and (49) for n = 3; � = �2; and, respectively, �

� = �1 and �
+ = �3: 9�3 (�2)

that satis�es both (48) and (49) if and only if (21) is satis�ed. Resting on the equality:

pi (�
0) p1(�)� p1 (�0) pi(�)
pi(�)p1(�)

=
p1(�)� p1 (�0)

p1(�)
� pi(�)� pi (�

0)

pi(�)
;

the term multiplied by �2 (�2) in (21) is negative if and only if (22) holds.

C Derivation of (LIC) and (23)
Recall e�s (� j�0 ) = ts (�)� C (q (�) ; �0) and

Es [e�s (� j�0 )] � nX
s=1

(ts (�)� C (q (�) ; �0)) ps (�0) : (54)

The �rst-order condition of the agent�s problem, evaluated at �0 = �; is given by:

nX
s=1

(t0s (�)� Cq (q (�) ; �) q� (�)) ps (�) = 0: (55)

From ts (�) = �s (�)+C (q (�) ; �) ; we compute t0s (�) = �
0
s (�)+Cq (q (�) ; �) q� (�)+C� (q (�) ; �) ;

which we then replace into (55) to get:

C� (q (�) ; �) = �
nX
s=1

�0s (�) ps (�) : (56)

29



Because
Pn

s=1 �s (�) ps (�) = 0; 8�; implies �
Pn

s=1 �
0
s (�) ps (�) =

Pn
s=1 �s (�) p

0
s (�) ; 8�; (56) is

further rewritten as (LIC).
Rewrite (48) and (49) as:

�n (�) pn(�) � �
C(q(�);�)�C(q(�);��)

����
p1(�)�p1(��)

����
p1(�)

�
pn(�)�pn(��)

����
pn(�)

�
X
s 6=1;n

�s (�) ps(�)

p1(�)�p1(�
�)

����
p1(�)

�
ps(�)�ps(��)

����
ps(�)

p1(�)�p1(��)
����
p1(�)

�
pn(�)�pn(��)

����
pn(�)

and

�n (�) pn(�) � �
C(q(�);�+)�C(q(�);�)

�+��
p1(�

+)�p1(�)
�+��
p1(�)

�
pn(�+)�pn(�)

�+��
pn(�)

�
X
s 6=1;n

�s (�) ps(�)

p1(�
+)�p1(�)
�+��
p1(�)

�
ps(�

+)�ps(�)
�+��
ps(�)

p1(�
+)�p1(�)
�+��
p1(�)

�
pn(�+)�pn(�)

�+��
pn(�)

:

Taking the limit for �� ! � and for �+ ! �; the conditions are both satis�ed if and only if
�n (�) satis�es (23).

D Proof of Lemma 1
Suppose that some pro�t �i (�) is changed by ": Accordingly, �j (�) is changed by � and

�k (�) by � such that (PC) is still saturated and the right-hand side of (LIC) does not vary.
Dropping the argument � everywhere for the sake of shortness, this requires:

�pj = �"pi � �pk , � = �"pi
pj
� �pk

pj

�p0k = ��p0j � "p0i , � = ��
p0j
p0k
� " p

0
i

p0k
:

Replacing the expression of � in that of �; we obtain:

� = �"pi
pj

p0i
pi
� p0k

pk
p0j
pj
� p0k

pk

: (57)

Replacing (57) in the expression of �; we further obtain:

� = "
pi
pk

p0i
pi
� p0j

pj

p0j
pj
� p0k

pk

: (58)

Using (24) in (57) and (58), we deduce that Si gn (�) 6= Si gn (�) :

E Proof of Lemma 2
Taking the expression of �n (�) pn(�) from (23), pugging into (48) and making use of the

inequalities p01(�)
p1(�)

> p0n(�)
pn(�)

and
pn(��)
pn(�)

>
p1(��)
p1(�)

to rearrange, (48) is rewritten as (25). Similarly,
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(49) is rewritten as (26).

F Proof of Lemma 3
The necessity of (27) is obvious. To show su¢ ciency, we �rst let �+ tend to �: Applying de

L�Hopital�s rule yields:
p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

=

p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

:

Using this in (27), we obtain (25). Similarly, as �� tends to � :

p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

=

p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

:

Using this in (27), we obtain (26). Hence, (27) is su¢ cient as well.

G Proof of Proposition 1 and corollaries in the �rst-best

setting

G.1 Proof of Proposition 1

Derivation of (34)

We see that

d

d�+

0@ p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

1A < 0

if and only if
p01(�+)
p1(�)

� p0s(�+)
ps(�)

p1(�+)
p1(�)

� ps(�+)
ps(�)

<

p01(�+)
p1(�)

� p0n(�+)
pn(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

: (59)

Multiplying the numerator by �+ � � in both sides, subtracting 1 from each side and manipu-
lating further, (59) becomes:

ps(�+)�p0s(�+)(�+��)
ps(�)

� p1(�+)�p01(�+)(�+��)
p1(�)

p1(�+)
p1(�)

� ps(�+)
ps(�)

<

pn(�+)�p0n(�+)(�+��)
pn(�)

� p1(�+)�p01(�+)(�+��)
p1(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

:

Using the de�nition of �s (�
0; �) ; this is rewritten as:

�s
�
�+; �

�
� �1

�
�+; �

�
p1(�+)
p1(�)

� ps(�+)
ps(�)

<
�n
�
�+; �

�
� �1

�
�+; �

�
p1(�+)
p1(�)

� pn(�+)
pn(�)

; (60)
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which is satis�ed by assumption.
We also see that:

d

d��

0@ p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

1A < 0

if and only if
p01(��)
p1(�)

� p0s(��)
ps(�)

ps(��)
ps(�)

� p1(��)
p1(�)

>

p01(��)
p1(�)

� p0n(��)
pn(�)

pn(��)
pn(�)

� p1(��)
p1(�)

: (61)

Multiply both sides by
�
� � ��

�
; subtract from either side and rearrange to obtain:

p1(��)+p01(��)(����)
p1(�)

� ps(��)+p0s(��)(����)
ps(�)

ps(��)
ps(�)

� p1(��)
p1(�)

>

p1(��)+p01(��)(����)
p1(�)

� pn(��)+p0n(��)(����)
pn(�)

pn(��)
pn(�)

� p1(��)
p1(�)

:

Resting on the de�nition of �; this is rewritten as:

�s
�
��; �

�
� �1

�
��; �

�
ps(��)
ps(�)

� p1(��)
p1(�)

<
�n
�
��; �

�
� �1

�
��; �

�
pn(��)
pn(�)

� p1(��)
p1(�)

; (62)

which is satis�ed by assumption.
Therefore, we have:

d

d�+

0@ p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

1A < 0 together with
d

d��

0@ p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

1A < 0;

involving that the di¤erence

p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

�
p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

is greatest as �� tends to � and �+ tends to �: For such values of �� and �+; the di¤erence here
above is found to be zero (by applying de L�Hopital�s rule). Hence, for all pairs of types, the
di¤erence is non-positive. In de�nitive, for any given pair

�
��; �+

	
such that �� < � < �+;

(27) is weakest if �s (�) = �L; 8s 6= 1; n: Substituting this value in (27) and rearranging yields
(34).

Proof of (32) and (33)

Setting �s (�) = �n (�) in (48), we see that �n (�) � �L if and only if (33) is satis�ed. The
fact that no other lottery satis�es (LL), if (LL) is not satis�ed by �1 (�) (the lottery such that
�s (�) is equal 8s 6= 1); follows from Lemma 1.
Setting �s (�) = �n (�) in (23) and then plugging the resulting expression of �n (�) ; we see

that (48) and (49) are jointly satis�ed if and only if so is (32).
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G.2 Proof of Corollary 1
Using �s (�) = �L in (23), �n (�) is rewritten as:

�n (�) = �
C� (q (�) ; �)� L

P
s 6=1;n ps(�)

�
p01(�)
p1(�)

� p0i(�)
pi(�)

�
pn(�)

�
p01(�)
p1(�)

� p0n(�)
pn(�)

� :

Replacing
P

s 6=1;n pi(�) = 1� p1(�)� pn(�) and
P

s 6=1;n p
0
s(�) = �p01(�)� p0n(�); �n (�) is further

rewritten as (30).
Recalling that �1 (�) = �

Pn
s=2 �s (�)

pi(�)
p1(�)

because
Pn

s=1 �i (�) pi (�) = 0; and using �s (�) =
�L and (30) in the expression of �1 (�) we �nd:

�1 (�) = �
nX

s 6=1;n

�s (�)
pi(�)

p1(�)
� �n (�)

pn(�)

p1(�)

=
L

p1(�)

nX
s 6=1;n

pi(�)�

0@Lp01(�)p1(�)
� C� (q (�) ; �)

pn(�)
�
p01(�)
p1(�)

� p0n(�)
pn(�)

� � L
1A pn(�)

p1(�)

Replacing again
P

s 6=1;n pi(�) = 1� p1(�)� pn(�); �1 (�) is further rewritten as (29).
We are left with checking that �1 (�) � �L and �n (�) � �L: The former is true because

p0n (�) < 0: The latter is implied by
p01(�)
p1(�)

> p0n(�)
pn(�)

together with C� (q (�) ; �)
p1(�)
p01(�)

� L; which is
implied by (33).

G.3 Proof of Corollary 2
Recall that by applying de L�Hopital�s rule one has:

lim
�+!�

p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

=

p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

and that:

d

d�+

0@ p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

1A < 0; 8�+ > �

Hence, the term:

X
s 6=1;n

�s (�) ps(�)

0@ p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

�
p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

1A
on the right-hand side of (26) is raised as �s (�) is decreased, so that (26) is relaxed. Also recall
that:

lim
��!�

p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

=

p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

;
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and that:

d

d��

0@ p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

1A < 0; 8�� < �:

Hence, also the term:

X
s 6=1;n

�s (�) ps(�)

0@ p1(��)
p1(�)

� ps(��)
ps(�)

p1(��)
p1(�)

� pn(��)
pn(�)

�
p01(�)
p1(�)

� p0s(�)
ps(�)

p01(�)
p1(�)

� p0n(�)
pn(�)

1A
in the right-hand side of (25) is raised as �s (�) is decreased, so that (25) is tightened.

G.4 Proof of Corollary 3
Condition (28) is satis�ed if �s (�

0; �) < �1 (�
0; �) < �n (�

0; �) : We shall now consider cases
in which one of these inequalities is violated.
First suppose that �s (�

0; �) > �1 (�
0; �) and �n (�

0; �) > �1 (�
0; �) for �0 6= �: Using these

inequalities �rst for �0 = �+ and then for �0 = ��; we rewrite (28) as:

p1(�+)
p1(�)

� pn(�+)
pn(�)

p1(�+)
p1(�)

� ps(�+)
ps(�)

<
�n
�
�+; �

�
� �1

�
�+; �

�
�s
�
�+; �

�
� �1

�
�+; �

�
and as:

pn(��)
pn(�)

� p1(��)
p1(�)

ps(��)
ps(�)

� p1(��)
p1(�)

<
�n
�
��; �

�
� �1

�
��; �

�
�s
�
��; �

�
� �1

�
��; �

� :
In either inequality, the left-hand side is greater than 1: It is thus necessary that �n (�

0; �) >
�s (�

0; �) and that the di¤erence �n (�
0; �)� �s (�0; �) be su¢ ciently large.

Next suppose that �1 (�
0; �) > �n (�

0; �) whereas �s (�
0; �) < �1 (�

0; �) : Using these inequali-
ties �rst for �0 = �+ and then for �0 = ��; we rewrite (28) as:

p1(�+)
p1(�)

� ps(�+)
ps(�)

p1(�+)
p1(�)

� pn(�+)
pn(�)

<
�1
�
�+; �

�
� �s

�
�+; �

�
�1
�
�+; �

�
� �n

�
�+; �

�
and as:

pn(��)
pn(�)

� p1(��)
p1(�)

ps(��)
ps(�)

� p1(��)
p1(�)

>
�1
�
��; �

�
� �n

�
��; �

�
�1
�
��; �

�
� �s

�
��; �

� :
The left-hand side in the former condition is lower than 1; the left-hand side in the latter
condition is above 1: For these two conditions to hold, it is su¢ cient that �s (�

0; �) > �n (�
0; �) :

It is necessary that the di¤erence �n (�
0; �)� �s (�0; �) be not too large.

We are left with the case in which �n (�
0; �) < �1 (�

0; �) < �s (�
0; �) : We see that (28) is

violated.
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G.5 Proof of Corollary 4
Replacing �s (�) = �L in (27) and rearranging, (27) is rewritten as (36).

G.6 Proof of Corollary 5
Comparing (33) with (34), we see that (34) is tighter than (33) if and only if:

C(q(�);�)�C(q(�);��)
pn(��)
pn(�)

� p1(�
�)

p1(�)

� C(q(�);�+)�C(q(�);�)
p1(�

+)
p1(�)

� pn(�+)
pn(�)

�
P

s 6=1;n ps(�)

�
p1(�

+)
p1(�)

� ps(�+)
ps(�)

p1(�
+)

p1(�)
� pn(�+)

pn(�)

�
p1(�

�)
p1(�)

� ps(��)
ps(�)

p1(�
�)

p1(�)
� pn(��)

pn(�)

� > �C (q (�) ; �)� C �q (�) ; ���� p1(�)

p1(�)� p1(��)
:

Let us group the terms including
�
C (q (�) ; �)� C

�
q (�) ; ��

��
to rewrite:

�
C (q (�) ; �)� C

�
q (�) ; ��

��24 1
pn(�

�)
pn(�)

� p1(�
�)

p1(�)

+
p1(�)

p1(�)� p1(��)

0@0@ p1(�
+)

p1(�)

P
s 6=1;n ps(�)�

P
s 6=1;n ps(�

+)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

1A
�
p1(�

�)
p1(�)

P
s 6=1;n ps(�)�

P
s 6=1;n ps(�

�)

p1(�
�)

p1(�)
� pn(�

�)
pn(�)

1A35
>

C
�
q (�) ; �+

�
� C (q (�) ; �)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

Using
P

s 6=1;n ps(�) = 1� p1 (�)� pn (�) and rearranging further yields:

�
C (q (�) ; �)� C

�
q (�) ; ��

�� p1(�)

p1(�)� p1(��)

0@pn(�) + 1� pn(�)� p1(�)

p1(�
+)

�
1� pn(�+)

�
p1(�)

p1(�
+)

�
p1(�

+)
p1(�)

� pn(�
+)

pn(�)

�
1A

>
C
�
q (�) ; �+

�
� C (q (�) ; �)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

: (63)
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We now take the expression in brackets in the left-hand side of (63) and factorize pn(�) to
develop as follows:

pn (�)

0@1 + 1� pn(�)� p1(�)

p1(�
+)

�
1� pn(�+)

�
p1(�)

p1(�
+)

�
pn (�)

p1(�
+)

p1(�)
� pn(�+)

�
1A

= pn (�)

0@1 + 1� pn(�)� p1(�)

p1(�
+)

�
1� pn(�+)

�
pn (�)� p1(�)pn(�

+)

p1(�
+)

1A
= pn(�)

pn(�)� p1(�)pn(�
+)

p1(�
+)
+ 1� pn(�)� p1(�)

p1(�
+)

�
1� pn(�+)

�
pn(�)� p1(�)pn(�

+)

p1(�
+)

=
p1(�

+)� p1(�)
p1(�

+)� p1(�)pn(�
+)

pn(�)

:

Using this, we can now rewrite (63) as:

�
C (q (�) ; �)� C

�
q (�) ; ��

�� p1(�
+)�p1(�)

p1(�)�p1(��)
p1(�

+)
p1(�)

� pn(�
+)

pn(�)

>
C
�
q (�) ; �+

�
� C (q (�) ; �)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

or, equivalently, as:
C (q (�) ; �)� C

�
q (�) ; ��

�
C
�
q (�) ; �+

�
� C (q (�) ; �)

>
p1(�)� p1(��)
p1(�

+)� p1(�)
;

which means that (16) is violated. Therefore, (34) implies (33) if and only if (16) is violated.

H Second best

H.1 Three types
Denote f (�t) the probability of P facing type �t 2 �3: Further denote s (�t) the multiplier

associated with (LL) when signal is s and type is �t; � (�t) that associated with (PC) when
type is �t; � that associated with (37), � that associated with (38), � that associated with (39),
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� that associated with (40. The Lagrangian of the programme is:X
�t2�3

[S (q (�t))� C (q (�t) ; �t)�R (�t)] f (�t) +
X
�t2�3

X
s2N

s (�) (�s (�t) + L) +
X
�t2�3

� (�t)R (�t)

+� f�n (�2) pn(�2)

�
p1(�3)
p1(�2)

R (�2)�R (�3)� [C (q (�2) ; �3)� C (q (�2) ; �2)]�
P

s 6=1;n �s (�2) ps(�2)
�
p1(�3)
p1(�2)

� ps(�3)
ps(�2)

�
p1(�3)
p1(�2)

� pn(�3)
pn(�2)

9=;
+�

8<:R (�1)�
p1(�1)
p1(�2)

R (�2)� [C (q (�2) ; �2)� C (q (�2) ; �1)]�
P

s 6=1;n �s (�2) ps(�2)
�
ps(�1)
ps(�2)

� p1(�1)
p1(�2)

�
pn(�1)
pn(�2)

� p1(�1)
p1(�2)

��n (�2) pn(�2)g

+�
p1 (�2)

p1(�3)

�
p1(�3)

p1 (�2)
R (�2)�R (�3)�

p1(�3)

p1 (�2)
[C (q (�3) ; �3)� C (q (�3) ; �2)]

� p1(�3)
p1 (�2)

X
s 6=1

�s (�3) ps(�3)

�
ps (�2)

ps(�3)
� p1 (�2)
p1 (�3)

�)

+�
p1 (�2)

p1(�1)

�
p1(�1)

p1 (�2)
R (�2)�R (�1) +

p1(�1)

p1 (�2)
[C (q (�1) ; �2)� C (q (�1) ; �1)]

+
p1(�1)

p1 (�2)

X
s 6=1

�s (�1) ps(�1)

�
p1 (�2)

p1 (�1)
� ps (�2)
ps(�1)

�)
:

We now characterize the solution.
First suppose that � (�1) = � (�2) = 0. The Lagrangian is linear in both

p1(�3)
p1(�2)

R (�2)�R (�3)
and R (�1)� p1(�1)

p1(�2)
R (�2) ; with coe¢ cients:

�
p1 (�2)

p1(�3)
� �

p1(�3)
p1(�2)

� pn(�3)
pn(�2)

�
pn(�1)
pn(�2)

� p1(�1)
p1(�2)

� �p1 (�2)
p1(�1)

:

Suppose that � = 0: Then, the former coe¢ cient is negative, and hence p1(�3)
p1(�2)

R (�2) � R (�3)
should be decreased until the point where the constraint with � is binding. Then, � > 0; in
contradiction with the hypothesis that � = 0: Suppose that � = 0: Then, the latter coe¢ cient
is positive, and hence R (�1) � p1(�1)

p1(�2)
R (�2) should be increased until the point where � > 0;

which contradicts the hypothesis that � = 0:We thus conclude that if � (�1) = � (�2) = 0; then
both � > 0 and � > 0. Next suppose that � (�1) > 0 and � (�2) > 0. It is immediate to see
that � = 0 and � = 0:
We now turn to show that n (�2) = 0 is equivalent to � > 0 and � > 0; and hence it is

equivalent to � (�1) > 0 and � (�2) > 0:
Suppose that n (�2) = 0. The Lagrangian is linear in �n(�2) with coe¢ cient (�� �) pn(�2):

If � > � = 0; then the Lagrangian increases with �n (�2) : Hence, �n (�2) should be raised until
the point where � > 0; in contradiction with the hypothesis that � = 0:Analogous contradiction
emerges if we suppose that � > � = 0: Provided that at second best it cannot be � = � = 0 (as
(37) and (38) do not hold jointly at the �rst-best allocation), it must be the case that � > 0
and � > 0: Suppose that � 6= �. As the two constraints with these multipliers are binding, it

37



must be the case that (�� �)�n (�2) pn(�2) = 0: However, if � 6= �; then the Lagrangian either
increases or decreases with �n (�2) ; involving that it should be �n (�2) 6= 0; in contradiction
with the requirement that (�� �)�n (�2) pn(�2) = 0: We conclude that � = �:
The Lagrangian is linear in �s (�2) with the following coe¢ cient:

ps(�2)

 
�

p1(�3)
p1(�2)

� ps(�3)
ps(�2)

p1(�3)
p1(�2)

� pn(�3)
pn(�2)

� �
ps(�1)
ps(�2)

� p1(�1)
p1(�2)

pn(�1)
pn(�2)

� p1(�1)
p1(�2)

!

= ps(�2)�

 p1(�3)
p1(�2)

� ps(�3)
ps(�2)

p1(�3)
p1(�2)

� pn(�3)
pn(�2)

�
ps(�1)
ps(�2)

� p1(�1)
p1(�2)

pn(�1)
pn(�2)

� p1(�1)
p1(�2)

!
:

Relying on (35), this is found to be negative, involving that s (�2) > 0 and �s (�2) = �L:
We now verify the hypothesis that n (�2) = 0: Resting on the binding constraints with �

and �; we see that �n (�2) > �L if and only if these two conditions are both satis�ed:

p1(�3)
p1(�2)

R (�2)�R (�3)� [C (q (�2) ; �3)� C (q (�2) ; �2)]�
P

s 6=1;n �s (�2) ps(�2)
�
p1(�3)
p1(�2)

� ps(�3)
ps(�2)

�
p1(�3)
p1(�2)

� pn(�3)
pn(�2)

� �Lpn(�2)
R (�1)� p1(�1)

p1(�2)
R (�2)� [C (q (�2) ; �2)� C (q (�2) ; �1)]�

P
s 6=1;n �s (�2) ps(�2)

�
ps(�1)
ps(�2)

� p1(�1)
p1(�2)

�
pn(�1)
pn(�2)

� p1(�1)
p1(�2)

� �Lpn(�2)

With �s (�2) = �L; 8s 6= 1; n; these conditions are the same as the constraints with � and
�. Hence, if n (�2) = 0 and so �n (�2) > �L; then the constraints with � and � are slack, in
which case � = 0 and � = 0; further involving that � (�1) > 0 and � (�2) > 0: If n (�2) > 0 and
so �n (�2) = �L; then � > 0 and � > 0; in which case � (�1) = � (�2) = 0:
Therefore, there are two solutions. The �rst applies when n (�2) > 0; � > 0; � > 0 and

� (�1) = � (�2) = 0: From the constraints with � and �; we �nd:

R (�2) =
p1 (�2)

p1(�3)
R (�3) + [C (q (�3) ; �3)� C (q (�3) ; �2)] (64)

+
X
s 6=1

�s (�3) ps(�3)

�
ps (�2)

ps(�3)
� p1 (�2)
p1 (�3)

�
R (�1) =

p1(�1)

p1 (�2)
R (�2) +

p1(�1)

p1 (�2)
[C (q (�1) ; �2)� C (q (�1) ; �1)] (65)

+
p1(�1)

p1 (�2)

X
s 6=1

�s (�1) ps(�1)

�
p1 (�2)

p1 (�1)
� ps (�2)
ps(�1)

�
:

Replacing in the Lagrangian, we see that P should set R (�3) = 0 together with �s (�1) =
�s (�3) = �L 8s 6= 1. Replacing R (�3) = 0 and �s (�3) = �L 8s 6= 1; n in (64) yields (42).
Replacing the obtained value of R (�2) and �s (�1) = �L 8s 6= 1; n in (65) yields (41).
The second solution applies when n (�2) = 0; � (�1) > 0; � (�2) > 0 and � = � = 0: Then,

R (�1) = R (�2) = 0. Replacing these values, R (�3) = 0 and �s (�2) = �L 8s 6= 1; n in (37) and
(38), we obtain the necessary condition (34) where �� = �1; � = �2; �

+ = �3: This condition is
binding because � > 0 as well as � > 0:
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H.2 A continuum of types. Proof of Proposition 2
We �rst show that (LIC) is rewritten as (44).
The incentive constraint whereby type �� is unwilling to report � is:

R (�) � p1(�)

p1
�
��
�R ����� p1(�)

p1
�
��
� �C (q (�) ; �)� C �q (�) ; ����

�
X
s 6=1

�s (�) ps
�
��
� p1(�)

p1
�
��
� � ps(�)

ps
�
��
�! :

This is rewritten as:

R (�)�R
�
��
�
�

p1(�)� p1
�
��
�

p1(�)
R (�)�

�
C (q (�) ; �)� C

�
q (�) ; ��

��
+
X
s 6=1

�s (�) ps(�)

 
ps(�)� ps

�
��
�

ps(�)
�
p1(�)� p1

�
��
�

p1(�)

!
:

Divide all terms by � � �� > 0 and take the limit for �� ! � to obtain:

R0 (�) � p01(�)

p1(�)
R (�)� C� (q (�) ; �) +

X
s 6=1

�s (�) ps(�)

�
p0s (�)

ps(�)
� p

0
1 (�)

p1(�)

�
: (66)

The incentive constraint whereby type �+ is unwilling to report � is:

p1
�
�+
�

p1(�)
R (�) � R

�
�+
�
�
�
C (q (�) ; �)� C

�
q (�) ; �+

��
�
X
s 6=1

�s (�) ps(�)

 
ps
�
�+
�

ps(�)
�
p1
�
�+
�

p1 (�)

!
:

This is rewritten as:

R
�
�+
�
�R (�) �

p1
�
�+
�
� p1(�)

p1(�)
R (�)�

�
C
�
q (�) ; �+

�
� C (q (�) ; �)

�
+
X
s 6=1

�s (�) ps(�)

�
ps(�

+)� ps(�)
ps(�)

� p1(�
+)� p1 (�)
p1 (�)

�
:

Divide all terms by �+ � � > 0 and take the limit for �+ ! � to obtain:

R0 (�) � p01 (�)

p1(�)
R (�)� C� (q (�) ; �) +

X
s 6=1

�s (�) ps(�)

�
p0s(�)

ps(�)
� p01(�)

p1 (�)

�
: (67)

Putting together (66) and (67) yields (43).
Rearrange (43) to obtain:

R0 (�)� p
0
1(�)

p1(�)
R (�) =

X
s 6=1

�s (�) ps(�)

�
p0s (�)

ps(�)
� p

0
1 (�)

p1(�)

�
� C� (q (�) ; �) :
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This is a �rst-degree di¤erential equation in the generic form:

R0 (�) + x (�)R (�) = y (�) ;

where

x (�) = �p
0
1 (�)

p1(�)

y (�) =

nX
s=2

�s (�) ps (�)

�
p0s(�)

ps(�)
� p01(�)

p1 (�)

�
� C� (q (�) ; �) :

The integrating factor is

� (�) = e
R
� p01(�)
p1(�)

d�
= e� ln(p1(�)) =

1

eln(p1(�))
=

1

p1(�)

Multiply either side of the di¤erential equation by � (�) to obtain:�
R0 (�)� p

0
1(�)

p1(�)
R (�)

�
1

p1(�)

=

"X
s 6=1

�s (�) ps(�)

�
p0s (�)

ps(�)
� p

0
1 (�)

p1(�)

�
� C� (q (�) ; �)

#
1

p1(�)

Using:
1

p1(�)

�
R0 (�)�R (�) p

0
1(�)

p1(�)

�
=

�
R (�)

p1(�)

�0
;

the di¤erential equation is rewritten as:�
R (�)

p1(�)

�0
=

"X
s 6=1

�s (�) ps(�)

�
p0s (�)

ps(�)
� p

0
1 (�)

p1(�)

�
� C� (q (�) ; �)

#
1

p1(�)
:

Integrating from � to � yields:

R (�) = R
�
�
�

+

Z �

�

"X
s 6=1

�s (x) ps(x)

�
p0s (x)

ps(x)
� p

0
1 (x)

p1(x)

�
� Cx (q (x) ; x)

#
p1(�)

p1(x)
dx;

which is rewritten as (44).
Take any triplet of types

�
��; �; �+

	
such that �� < � < �+: Denote �

�
�; �+

�
; �
�
�; ��

�
;

�
�
�; �+

�
and �

�
�; ��

�
the multipliers respectively associated with IC�

�+
; IC�

��
; IC�

+

� and IC�
�
� ;

where IC�
�+
is the incentive constraint whereby type �+ is unwilling to report �; and analogously

for the others. Proceeding in a similar fashion to the three-type case, one can assess that
�
�
�; �+

�
= �

�
�; ��

�
> 0 and that R (�) = 0 when n (�) = 0: The results so obtained hold

true for all � 2
�
�; �
�
:

The constraints associated with �
�
�; �+

�
and �

�
�; ��

�
are binding. Resting on this and
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replacing R (�) = 0; we obtain:

C(q(�);�)�C(q(�);��)
pn(��)
pn(�)

� p1(�
�)

p1(�)

� C(q(�);�+)�C(q(�);�)
p1(�

+)
p1(�)

� pn(�+)
pn(�)

�
P

s 6=1;n ps(�)

�
p1(�

+)
p1(�)

� ps(�+)
ps(�)

p1(�
+)

p1(�)
� pn(�+)

pn(�)

�
p1(�

�)
p1(�)

� ps(��)
ps(�)

p1(�
�)

p1(�)
� pn(��)

pn(�)

� = L:
Provided that (34) does not hold at the �rst-best level of q (�) ; this condition is satis�ed by
decreasing the value of the di¤erence:

C (q (�) ; �)� C
�
q (�) ; ��

�
pn(�

�)
pn(�)

� p1(�
�)

p1(�)

�
C
�
q (�) ; �+

�
� C (q (�) ; �)

p1(�
+)

p1(�)
� pn(�

+)
pn(�)

;

which requires distorting q (�) upwards, provided that Cq� > 0:
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