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Abstract

In this paper, we consider a cooperative game in which two types of
players co-exist: solidary and non solidary players. Solidary players are
able to support by consent at least one of their weaker partners without
disadvantaging non-solidary players. We present a value of the game which
takes ito account the types of players and satisfies some appropriate axioms:
Efficiency, Additivity, Symmetry among players who have the same type,
Conditional null player, and a new axiom, the Unaffected Allocation of non-
solidary players - (UA) - which is defined as follows: when players have
the possibility to decide freely to be solidary, this should affect neither the
allocations of non-solidary players, nor the outcome of the game."
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1 Introduction
In cooperative games, the most difficult economic problem is how of gain from
cooperation is shared. A pioneering study that addresses this issue is that of
Shapley [1953]. He considers a superadditive cooperative game in characteristic
function form, and proposes as a solution to distribute "fairly" the gains of the
coalition of players. This result has many applications, particularly in economics,
and in social and political science. For each player, the famous Shapley value
assigns it’s expected marginal contribution with respect to a uniform distribution
over the set of all permutations on the set of players. Remarkably Shapley proved
that the proposed value is the unique value which satisfies four acceptable axioms.
The first one (Efficiency) says that players share among themselves the resources
available to the grand coalition. The second one (Additivity) requires that the
value be additive on the space of all games. The third one (Symmetry) requires
that players who make the same marginal contribution to any coalition, should
have the same value. The last one (Null player) requires that players who has zero
marginal contribution to any coalition must have zero payoffs.

Most of contributions in literature are devoted to alternative axiomatic charac-
terizations of the Shapley value, like Hart and Mas-Colell’s axiom of consistency,
Young’s axiom of monotonicity and the notion of potential Winter (1992). When
some partition of players is given a priori other than the grand coalition, Au-
mann and Drèze (1974) and Owen (1977) generalize the Shapley value in this
environment. The extensions to NTU (non transferable utility) games and non
atomic games can be found in Aumann and Shapley (1974) and in Winter (1991).
Roth (1977) showed that the Shapley value can be expressed as a von Neumann-
Morgenstern utility function. For the uniqueness of the Shapley value, when we
restrict the class of all games to the context of the subclass of games, one can see
Dubey (1975) and Neyman (1989).

We will return to the Shapley axioms, especially the axiom of zero player who
said "players who have no marginal contribution in any coalition must have zero
payoffs". This is a difficult task because, for the survival of a group, it is necessary
to have some gain transfer to that specific player. In our societies there is often
a gain transfer to people in unemployment, it offers them to lead a dignified life
and also allow them to have new skills to meet labor supply market. Societies also
support disabled peoples with a minimum income and training appropriated to
their disability, so that they can integrate the society and live normally. Thus, we
speak about solidarity. The solidarity is a personal (or a group) value. In social
group, solidarity is the capacity of performing as a whole in a group. It denotes a
high degree of integration and internal stability, which implies to assume and to
share the benefits and the risks.

Nowak and Radzik (1994) have proposed a new solution for cooperative TU
games. This value is called the solidarity value.1 This solution concept, which gives

1The solidarity value was first introduced by Sprumont (1990), in a recursive way. Calvo
(2008) has shown that both definitions are equivalent.
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for each game one solution, is based on the Shapley value. Formally, the Nowak
and Radzik (1994). value appears as a weighted sum of the average contributions
of different coalitions of a player.

If a player wants to join a coalition, he will get a fraction which depends on the
average contribution of players in this coalition. If the marginal contribution of
the player is higher than the average contribution of the coalition, the latter will
offer a part of his contribution to the coalition and thus help those whose marginal
contribution does not reach the average contribution of the coalition. Hence the
use of the word "solidarity" by Nowak and Radzik.

Calvoy and Gutiérrez [2010] have looked to the two-step Shapley value, a value
introduced by Kamijo (2009), by explicitly introducing this solidarity principle in
the axiomatic system. This yields additional support for the two step Shapley
value as an interesting alternative to the Owen value whenever solidarity matters.

In a recent work Calvoy and Gutiérrez (2014), authors define and characterize
the class of all weighted solidarity values. Their characterization employs the clas-
sical axioms determining the solidarity value (except symmetry), that is, efficiency,
additivity and the A-null player axiom, and two new axioms proportionality and
strong individual rationality. In is shown in a second axiomatization, that the ad-
ditivity and the A-null player axioms are replaced by a new axiom called average
marginality.

The limit of these techniques is that they assumes that, in a coalition, all the
players with a marginal contribution (which is) higher than the average contri-
bution of the coalitions, must behave in solidarity with the others. Secondly the
solidarity value can lead to situations where the poor (a player who is a null player
or has a small value) through transfers can achieve a more favorable status, some
times he (or she) can be in a social level near to those players who participated
in solidarity. As we see in the life of every day the solidarity is intended to keep
people in a social level so that they can improve their standard of living by look-
ing for better job opportunities, making training to adapt to the supply of labor
market .... etc ...

The principle of solidarity, as we conceive in this work, differs from the various
measures of solidarity offered so far, by the fact that it is offered and natural: the
player decides to give, with his consent, and without expecting the slightest com-
pensation for his contribution, thus it is a purely human act (without obligation).
Each player can give a fraction of his own payoff and favor one or several players
without disadvantaging other players in the game. This solidarity is thus far from
being compulsory and strategic; it is a natural and free act.

The fact that players decide, naturally, to behave as solidary players (and are
not forced to do so) does not diminish the importance of the following question:
how to share the gains in a cooperative game in the presence of a coalition of
solidary players? In other words, how can we calculate the new value denoted by
ζ(N, v, S∗) in this work?

The rest of the paper is organized as follows. Section 2 is devoted to basic
definitions. Section 3 introduces the free solidarity value. This is done with the
help of illustrative example designed to show that, when the solidarity is free, it
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can improve the result of the game. We provide the axiomatic characterization of
this value in Section 4. The conclusions are presented in Section 5.

2 The Shapley value, The Solidarity value
A coalitional form game with transferable utility (every coalition can divide its
worth in any possible way among its members) on a finite set of players N =
{1, 2...n} is a function v from the set of all coalitions 2N to R, and assigns to each
coalition S ⊆ N a real value in R with v(∅) = 0. The real v(S) represents the
total payoff or rent the coalition S can get in the game v and it is considered as
a monetary value (players having similar preferences) in the case of cooperative
TU-games. A coalition S is a subset of the set N = {1, 2...n} of n players, with
S ⊆ N . S = {i} is a coalition of one player (singleton), S = {N} is a coalition of
all the players in the game (grand coalition). For any coalition S or T , let denote
by s respectively t the cardinal (the number of players) of S respectively of T ,
some times for a coalition S, we write its cardinality by | S | instead of s.

For a game (N, v), a value is a function ψ which associates to each player i ∈ N
a real number ψi(N, v) which represents the payoff of player i when he participates
in the game (N, v).

The famous Shapley value assigns an expected marginal contribution to each
player in the game with respect to a uniform distribution over the set of all per-
mutations on the set of players. Shapley proved that the proposed value is the
unique value which satisfy four acceptable axioms. The first (Efficiency) says that
players distribute among themselves the resources available to the grand coalition.

Axiom A1 (Efficiency): For any game (N, v) ∈ GN ,
∑
i∈N

ψi = v(N); where v(N)

is a value of the grand coalition.
The second (Additivity) requires that the value be an additive on the space of

all games.
Axiom A2 (Additivity): For any games (N, v), (N,w) ∈ GN , ψ(N, v + w) =
ψ(N, v) + ψ(N,w). This axiom, which clarifies how the values of different games
must be related to one another, is the ingenious idea behind Shapley’s demonstra-
tion.

The third (Symmetry) requires: Players who make the same marginal contri-
bution to any coalition, have the same value.
Axiom A3 (Symmetry): If ∀S ⊂ N , i, j /∈ S, v(S ∪ {i}) = v(S ∪ {j}), then
ψi = ψj. i, j are said to be symmetrical players. In this axiom the names of the
players play no role in determining the value.

The last (Null player) requires: players whose marginal contribution is null
with respect to every coalition must have zero payoffs.
Axiom A4 (Null player): A player i ∈ N is qualified as a null-player if his
contributions, without exception, are 0 , i.e., ψi(N, v) = 0.

The Shapley value depends on the marginal contribution of players in all the
coalitions he can join. Let Ci(v, S) be the marginal contribution of player i in the
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coalition S ⊆ N in the game (N, v). This contribution can be formally defined as
follows:

Ci(v, S) = v(S)− v(S/{i}).

The Shapley value Sh(N, v) ∈ RN is given by:

Shi(N, v) =
∑
S3i

(n− s)!(s− 1)!

n!
[v(S)− v(S\{i}] (1)

Theorem 1 [Shapley 1953] A value ψ on GN satisfies efficiency, additivity,
symmetry and the null player axiom, if and only if ψ is the Shapleyvalue, i.e.,
ψ(N, v) = Sh(N, v).

The layout of the proof that Shapley elaborated consists to think of a char-
acteristic function v as a vector with 2n − 1 components expressed in a space
generated by 2n− 1 unanimity games wT . Then the set of all games in character-
istic form is exactly the Euclidean space of dimension 2n−1. If we know the value
of each components (which is a game) of the basis, then we can determine the
value for any game. The additivity axiom is determining to elaborates this result.
The basis is defined from the unanimity games defined by for fixed coalition T ,

wT (S) =

{
1, T ⊆ S
0, T 6⊂ S

.If for some player i /∈ T , then i is a null player in this

game, which is obvious from the fact that the coalition S containing i are such
that T 6⊂ S and the WT (S) = 0, then from null player axiom player i gets zero.
Players in T are symmetric, they get the same value (from symmetric axiom).
From efficiency players in T get 1

t
as value. A useful property of the unanimity

games wT (.) when T goes through the different coalitions of N is to form a basis
for the set of all games. Therefore any game can be written as the sum of αTwT .
The axiom of additivity completes the proof. 2

In Nowak and Radzik (1994) have proposed a value named solidarity value.
This new value attributes to any player i ∈ N the average marginal contribution of
all players in the same coalition S ⊆ N . Let Cav(S) be the average contribution of
coalition S in the game (N, v). In this case, all the players forming S have Cav(S)
as their contribution.

Cav(S) = 1
s

∑
i∈S

[v(S)− v(S\{i}] = 1
s

∑
i∈S

Ci(v, S)

The Solidarity value of a TU-game (N, v) is a unique vector (n-tuple)NR(N, v) ∈
Rn, calculated as follows:

NRi(N, v) =
∑
S3i

(n− s)!(s− 1)!

n!
[Cav(S)] (2)

2Certainly a useful reference for Shapley value and the different extensions is Roth, A. E.
(1988).
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Compared to Shapley (1953),The only new axiom introduced by Nowak and
Radzik (1994) is the A-null player axiom.

If it happens that every coalition S containing player i has a null average
contribution then player i gets nothing from the game v.
A-null player: If Cav(S) = 0 for every coalition S containing i, thenNRi(N, v) =
0. Player i is said to be an A-null player

Theorem 2 [Nowak and Radzik,1994] A value ψ ∈ GN satisfies the effi-
ciency, additivity, symmetry and A-null player axioms if and only if ψ(N, v) =
NR(N, v), i.e., ψ is the solidarity value.

It is clear that both values only differ in the treatment of the null players. The
null player axiom says that if all the marginal contributions of a player in a game
are zero, then the player should obtain zero. The interpretation of the A-null
player axiom is less evident. Notice that Cav(S) = 0 means that the expected
productivity of the players in coalition S is zero. The A-null player axiom says
that when the average productivity of all coalitions to which the player belongs
are zero then he must receive zero.

Let’s start with an example through which we will see how to use both seminal
methods of resolution, i.e., the Shapley value and the Nowak and Radzik value.

Example 1 (Three Brothers):3

Players 1, 2 and 3 are brothers and they live together. Players 1 and 2 can make
together a profit of one unit, that is, v(1, 2) = 1. Player 3 is a disabled person and
can contribute nothing to any coalition. Therefore, v{1, 2, 3} = 1. Furthermore,
we have v{1, 3} =v{2, 3} = 0. Finally, we assume that v{i} = 0 ∀i ∈ {1, 2, 3} for
every player i. This is a classical unanimity game. The Shapley value of game
is Sh(N, v) = (1

2
, 1
2
, 0). (Should the disabled brother leave his family?) If players

1 and 2 take responsibility for their brother (player 3), then the solidarity value
NR(N, v) = ( 7

18
, 7
18
, 4
18
).

But, following this rule, if Cav
i (S) > Ci(v, S), then player i is obliged to offer some

part of his/her marginal contribution to the coalition S to support some "weaker"
members of S. With the Shapley value player 3 is a null player he gets 0, while
with solidarity value player 3 is not a A-null player.

Example 2:

N = {1, 2, 3}
v(1) = 1 ,v(1, 2) = 4 ,v(1, 2, 3) = 5
v(2) = 3 ,v(1, 3) = 1.5
v(3) = 0 , v(2, 3) = 3

We get the values Sh(N, v) = (8.5
6
, 19

6
, 2.5

6
) and NR(N, v) = (84

54
, 124.5

54
, 61.5

54
).

3Nowak and Radzik [1994]
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Let compute the transfer from solidary players to player 3:

Example1/Players Shapley value Solidarity Value Values Transferred to player 3
1 1

2
7
18

-0,11
2 1

2
7
18

-0,11
3 0 4

18
+0,222

Example2/Players Shapley value Solidarity Value Values Transferred to player 3
1 8,5

6
84
54

+0,14
2 19

6
124,5
54

-0,86
3 2,5

6
61,5
54

+0,72

Remark

For example 1, players 1 and 2 transfer 22, 22% of their values to the null player
3. In example 2, player 3 is not a null player, he received 22, 78% and has a value
near to player 1’s value. Initially player 1 has three times the value of player 3.
The solidarity value can lead to situations where the poor through transfers can
achieve a more favorable status. As we see in the life of every day the solidarity is
intended to keep people in a social level so that they can improve their standard
of living by looking for better job opportunities, making training to adapt to the
supply of labor market .... etc ...

3 The Free Solidarity Value
Let us now suppose that some players decide to be solidary and others not solidary.
We have two types of players solidary and not solidary players. We note this
coalition grouping of solidary players by S∗. Among these players, each will have

1
|S∩S∗| of the sum of their marginal contributions4 every time they find themselves
in the same coalition S.

When the coalition is mixed, formed by both types of players, and to reflect
certain social behavior of the players in a game we define the following two types
of contributions:

∀i ∈ S ⊆ N\∅
S∩S∗ 6=∅

:

 Ci(v, S) = (V (S)− V (S\i)) if i ∈ (S\(S ∩ S∗))
C̃av
i (v, S) = 1

|S∩S∗|(
∑

k∈S∩S∗
(V (S)− V (S\k)) if i ∈ (S ∩ S∗)

Every non-solidary players, i ∈ (S\S ∩ S∗), will have a value depending on its
marginal contribution Ci(v, S). And every solidary players, i ∈ (S∩S∗), will have
a value according to its average marginal contribution C̃av

i (v, S).
4The solidary players can adopt another way of sharing the sum of their marginal contribu-

tions, other than the egalitarian sharing.
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Note that, Contrary to the seminal paper of Nowak and Radzik (1994), the av-
erage marginal contribution C̃av

i (v, S) that we propose through the last formula
may be partial; if the players of the same coalition are not all solidary.

The free solidarity value ζi(N, v, S∗) of a cooperative TU-game (N, v) , and
containing S∗ as exogenous coalition, is given by:

ζi(N, v, S
∗) =


∑
S3i

(n−s)!(s−1)!
n!

[v(S)− v(S\{i}] = Shi(N, v) if i /∈ S∗∑
S3i

(n−s)!(s−1)!
n!

[ 1
|S∩S∗|(

∑
k∈S∩S∗

(V (S)− V (S\k))] if i ∈ S∗

(3)

Remark

if S∗ = ∅ or S∗ = {i}, so ζ(N, v, S∗) =Sh(N, v).
if S∗ = N,so ζ(N, v, S∗) =NR(N, v).

Let reconsider the example 1 with S∗ = {1, 3}, the first player is very attached
to his third brother and decides to help him, while the second player is not affected
by the disability of his brother

As 1, 3 ∈ S∗ = {1, 3} then:
ζ1(N, v, S

∗) =
∑

1∈(T∩{1,3})6=∅

(n−t)!(t−1)!
n!

[C̃av
1 (v, T )]

= 1
3
.0 + 1

6
.1 + 1

6
.1
2
.0 + 1

3
.1
2
.1 = 1

6
+ 1

6
= 2

6

ζ3(N, v, S
∗) =

∑
3∈(T∩{1,3})6=∅

(n−t)!(t−1)!
n!

[C̃av
3 (v, T )]

= 1
3
.0 + 1

6
.1
2
.0 + 1

6
.0 + 1

3
.1
2
.1 = 1

6
= 1

6

2 /∈ S∗ = {1, 3} we use the Shapley formula:
ζ2(N, v, S

∗) =
∑
T32

(n−t)!(t−1)!
n!

[v(T )− v(T\{2}] = Sh2(N, v)

= 1
3
.0 + 1

6
.1 + 1

6
.0 + 1

3
.1 = 1

6
+ 1

3
= 3

6

=⇒ ζ(N, v, S∗) = (1
3
, 1
2
, 1
6
)

For example 2, let assume that S∗ = {1, 3}, we use the following formula:
ζ1(N, v, S

∗) =
∑

1∈(S∩{1,3}) 6=∅

(n−s)!(s−1)!
n!

[C̃av
1 (v, S)]

= 1
3
.1 + 1

6
.1 + 1

6
.1
2
.(0.5 + 1.5) + 1

3
.1
2
.(2 + 1) = 7

6

ζ3(N, v, S
∗) =

∑
3∈(S∩{1,3}) 6=∅

(n−s)!(s−1)!
n!

[C̃av
3 (v, S)]

= 1
3
.0 + 1

6
.1
2
.(0, 5 + 1.5) + 1

6
.0 + 1

3
.1
2
.(2 + 1) = 4

6
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2 /∈ S∗ = {1, 3} we use the Shapley formula:
ζ2(N, v, S

∗) =
∑
S32

(n−s)!(s−1)!
n!

[v(S)− v(S\{2}] = Sh2(N, v)

= 1
3
.3 + 1

6
.3 + 1

6
.3 + 1

3
.3.5 = 19

6

=⇒ ζ(N, v, S∗) = (7
6
, 19

6
, 4
6
).

For example 2, let assume S∗ = {1, 2} and compute the free solidarity values:

Example1/Players Shapley value Free Solidarity Value Values Transferred to player 3
1 1

2
1
3

1
6

2 1
2

1
2

0
3 0 1

6
+1

6

Example2/Players Shapley value Free Solidarity Value Values Transferred to player 3
1 8,5

6
7
6

1,5
6

2 19
6

19
6

0
3 2,5

6
4
6

+1,5
6

Here the transfer from players 1 and 2 is of 16, 6% for example 1, and 2, 14%
for example 2.

Let now consider the case with S∗ = {2, 3} in example 2, we obtain
Example2/Players Shapley value Free Solidarity Value Values Transferred to player 3
1 8,5

6
8,5
6

0
2 19

6
15
6
−4

6

3 2,5
6

6,5
6

+4
6

Here player 2 transfers 21, 05% of his value to player 3.

Remarks

1. According to the value of Shapley, the players behave in a individual way.
Every player will have a value which depends only on its own marginal
contribution in the coalitions which can form. they are not obliged to help
their weaker partners.

2. With the solidarity value, all the players, who contribute to the coalitions
more than the average marginal contribution, should support their weaker
partners.

3. In our case, the not solidarity player, is not punished because he not agrees
to help his brother (by consent) and therefore he is going to be able to master
his act of solidarity to remain at least as satisfied as possible.

9



4 An Axiomatic Characterization
Let ψ(N, v, S∗) a value for a cooperative TU-game G(N, v, S∗). We now consider
some axioms that are desirable for such a value:
Axiom A(1), efficiency (Eff): for any game (N, v) ∈ GN ,∑
i∈N

ψi(N, v, S
∗) = v(N,S∗), i.e. ψ(N, v, S∗) is a function value;

Axiom A(2), additivity (Add): for any games (N, v, S∗), (N,w, S∗) ∈ GN ,
ψ(N, v + w, S∗) = ψ(N, v, S∗) + ψ(N,w, S∗);
Axiom (A3), Unaffected Allocation of non-solidary players - (UA) : when
players decide freely, to be solidary (by forming S∗) this should not affect nei-
ther the values of the other players who have chosen to stay out of solidar-
ity, nor the value v. i.e., ∀S ⊆ N, v(S, S∗) = v(S,∅) and ∀i /∈ S∗ 6= ∅,
ψi(N, v, S

∗) = ψi(N, v,∅);
Axiom A(4), conditional symmetry (Cond Sym): if i, j are conditional
symmetric, i.e., ∀S ⊆ N\{i, j}, v(S ∪ {i}) = v(S ∪ {j}), then ψi = ψj if i, j ∈ S∗
or i, j /∈ S∗;
Axiom A(5): + (Cond-null): if player i ∈ N is qualified by Cond-null player,
in this case, according to its type, his contributions, without exception, are 0. i.e.,
in every coalition S containing player i :C̃av

i (v, S) = 0 if i ∈ S∗ and Ci(v, S) = 0
if i /∈ S∗.

Axioms A(1)-A(2) are standards.
The axiom A(3) is new, it means that the not solidary players, who are in some
coalition S, behave as the entire coalition S is formed only by not solidary play-
ers. Their values in S depend on their marginal contributions and not on their
average marginal contributions. For them, all the players in N , are considered as
not solidarys.

The axiom A(4) is an adaptation of the standard SYM axiom for our case.
Contrary to seminal works of Shapley (1953) and Nowak and Radzik (1994), we
have two types of players; solidary and not solidary. One cannot compare two
players of the different type according to their marginal contributions. It is for
that we supposed a comparison according to their membership. If it happens
that in every coalition T containing two agents of the same type with the same
marginal contributions then, they should be rewarded equally.

The axiom A(5) can be seen as a combination of the axiom of the null player
of Shapley (1953) and the axiom of the A-null player of Nowak and Radzik (1994).
If it happens that in every coalition T containing some or all players of S∗, players
in {S ∩ S∗} has a null marginal average contribution, then, according to A(5),
∀i ∈ (S ∩ S∗), ψi(N, v, S∗) = 0.
And, if it happens that every coalition T containing player i /∈ S∗, the marginal
contribution of player i is null, i.e., Ci(v, S) = 0, then according to A(5) this player
gets nothing from the game.
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We can now give our main result.

Theorem

A value ψ : GN 7→ Rn satisfies efficiency, conditional symmetry, additivity, respect
of freedom of choice and a conditional null player axiom if and only if ψ = ζ. i.e.,
ψ is the free solidarity value.

To prove this result, we follow the literature and implement Shapley’s proof. We
first look to the unanimity game w(T,S∗)(.) defined in the following definition. We
show that the values of unanimity game satisfying the axioms are uniquely defined.
That each game v can be expressed as a linear combination of unanimity games,
we deduce therefore that the value is unique. The last point of proof consist by
showing that the analytical given value ζ satisfies the axioms.

let’s begin with the following definition:

Definition : (unanimity game)

Let N a set of n agents and S∗ the coalition of solidays players. For T ⊆ N\∅,
the unanimity games w(T,S∗)(.) is such that ∀S ⊆ N,

w(T,S∗)(S) =


|T∩S∗|
|T |

 | S ∩ S∗ |
| T ∩ S∗ |


−1

+ |T\T∩S∗|
|T | if S ⊃ T

0 otherwise

(4)

Where

 | S ∩ S∗ |
| T ∩ S∗ |

−1 = |T∩S∗|!(|S∩S∗|−|T∩S∗|)!
|S∩S∗|!

We have the following lemma.

Lemma 1

∀T ⊆ N, T 6= ∅ the game w(T,S∗)(S)has the following properties :

1. If S = T , then w(T,S∗)(S) = 1.

2. If T ⊂ S and S∗ = ∅, then w(T,∅)(S) = 1.

3. If T ⊂ S with (S ∩ S∗) = (T ∩ S∗) ∪ E, (T ∩ S∗) ∩ E = ∅, (T ∩ S∗) 6= ∅
and E 6= ∅, then w(T,S∗)(S) =

1
|S∩S∗|

∑
i∈S∩S∗

w(T,S∗)(S\{i}).

11



4. The set {wT,S∗(S) : T ⊆ N\∅} is a linear basis for GN .

The last point of lemma means that every TU game (N, v, S∗) can be ex-
pressed in the basis (wT,S∗)T⊆N\∅ such that ∀S ⊆ N

v(S) =
∑

T⊆N\∅

αTwT,S∗(S).

Proof

1. When S = T then,

wT,S∗(T )=
|T∩S∗|
|T |

 | S ∩ S∗ |
| T ∩ S∗ |

−1 + |T\T∩S∗|
|T | = ( |T∩S

∗|
|T | × 1) + |T\T∩S∗|

|T | = 1.

2. If T ⊂ S and S∗ = ∅, then w(T,∅)(S)=
0
|T |

 0

0

−1 + |T\∅|
|T | = |T |

|T | = 1.

3. If T ⊂ S with (S ∩ S∗) = (T ∩ S∗) ∪ E, (T ∩ S∗) ∩ E = ∅, (T ∩ S∗) 6= ∅
and E 6= ∅, then w(T,S∗)(S) =

1
|S∩S∗|

∑
i∈S∩S∗

w(T,S∗)(S\{i}).

Using the expression of w(T,S∗)(S) in (4), if T ⊂ S, we have:
w(T,S∗)(S)− 1

|S∩S∗|

∑
i∈S∩S∗

w(T,S∗)(S\{i})= w(T,S∗)(S)− 1
|S∩S∗|

∑
i∈E

w(T,S∗)(S\{i})

= |T∩S∗|
|T |

 | (T ∩ S∗) ∪ E |
| T ∩ S∗ |

−1− |T∩S∗||T |
1

|(T∩S∗)∪E|

∑
i∈E

 | (T ∩ S∗) ∪ (E\{i}) |

| T ∩ S∗ |

−1
= |T∩S∗|

|T |
|T∩S∗|!|(E)|!
|(T∩S∗)∪E|! −

|T∩S∗|
|T |

1
|(T∩S∗)∪E| | E | ×(

|T∩S∗|!||E|−1|!
||((T∩S∗)∪E)|−1|!)

=
| T ∩ S∗ |
| T |

| T ∩ S∗ |! | (E) |!
| (T ∩ S∗) ∪ E |!

− | T ∩ S
∗ |

| T |
| T ∩ S∗ |! | (E) |!
| (T ∩ S∗) ∪ E |!

= 0. (5)

4. The set {wT,S∗(S) : T ⊆ N\∅} is a linear basis for GN .

Following Nowak and Radzik (1994), let S1, S2, ..., Sk is a fixed sequence of
possible coalitions S of N such that k = 2n− 1 is a number of coalition. So, there
are k unanimity games.

First, we classify the coalitions by ascending order of size as follows:
1 =| S1 |≤| S2 |≤ .... ≤| Sk |= n.
We can write αTwT,S∗(S) for all S ⊆ N, in matrix form:
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S\T S1 S2 · · · Sk
S1 1 0 · · · 0
S2 αS1w(S1,S∗)(S2) 1 · · · 0
...

...
... . . . 0

Sk αS1w(S1,S∗)(Sk) αS2w(S2,S∗)(Sk) · · · 1

The matrix is a triangle matrix with non-null diagonal elements, then its determi-
nant is non-null.This implies that the set {wT,S∗(S) : T ⊆ N\∅} is a linear basis
for GN. �

Proof of the main result

Let’s show that the value function of a unanimity game is unique. Let T ⊆ N\∅
and α ∈ R. Let us prove that ψ(N,αwT,S∗ , S∗) is uniquely defined.

1. One must check that, whatever its type, any player who is not in T is a Cond-
null player in the game αwT,S∗(S), i.e., one must proofs that the marginal
contribution (i /∈ S∗) or the average marginal contribution (i ∈ S∗) of a
player is equal to 0, thus by A4 one can say that ∀i /∈ T , ψi(N,αwT,S∗) = 0.

This is obvious when T is not a subset of S.
When T ⊆ S, i /∈ T, two cases are possible:
- If i ∈ S∗, then (S ∩ S∗) = (T ∩ S∗) ∪ E , (T ∩ S∗) ∩ E = ∅, E 6= ∅.
Following (5),

1
|S∩S∗|

∑
i∈(S∩S∗)

[αw(T,S∗)(S)− αw(T,S∗)(S\{i})] = C̃av
i (αw(T,S∗), S) = 0.

- If i /∈ S∗.
It’s clear that T ⊂ {S\{i}} since T ⊂ S, i /∈ T. Then αw(T,S∗)(S) =
αw(T,S∗)(S\{i}). So, Ci(αw(T,S∗), S) = 0. Thus By A(5) we can say that,
∀i /∈ T , ψi(N,αw(T,S∗)) = 0 i.e., it is a Cond-null player.

2. We must show that every two agents of the same type in T are conditional
symmetric in the game αwT,S∗(.). i.e.,we must show that if (i, j) ∈ (T\T∩S∗)
or (i, j) ∈ (T ∩S∗) we have Ci(αw(T,S∗), S) = Cj(αw(T,S∗), S). Thus, by A(4)
we can say that ψi(N,αw(T,S∗)) = ψj(N,αw(T,S∗)) because they are of the
same type.
-If (i, j) ∈ (T )2, then for all S ⊃ T :
αw(T,S∗)(S)− αw(T,S∗)(S\{i}) = αw(T,S∗)(S)− αw(T,S∗)(S\{j})

= |T∩S∗|
|T |

 | S ∩ S∗ |
| T ∩ S∗ |

−1 + |T\T∩S∗|
|T | − 0.

By Cond Sym, if (i, j) ∈ (T\T∩S∗) or (i, j) ∈ (T∩S∗) then, ψi(N,αw(T,S∗)) =
ψj(N,αw(T,S∗)).
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3. Since ψ is efficient, then;

∑
i∈N

ψi(N,αwT,S∗ , S
∗) = αw(T,S∗)(N) = α

 |T∩S∗||T |

 | S∗ |

| T ∩ S∗ |

−1 + |T\T∩S∗|
|T |


=
∑
i∈T

ψi(N,αw(T,S∗), S
∗) +

∑
i/∈T

ψi(N,αw(T,S∗), S
∗)

=
∑

i∈T∩S∗
ψi(N,αw(T,S∗), S

∗) +
∑

i∈(T\T∩S∗)

ψi(N,αw(T,S∗), S
∗)

(following A(3))
=
∑

i∈T∩S∗
ψi(N,αw(T,S∗), S

∗) +
∑

i∈(T\T∩S∗)

ψi(N,αw(T,∅),∅). Then,∑
i∈T∩S∗

ψi(N,αw(T,S∗), S
∗) = αw(T,S∗)(N)−

∑
i∈(T\T∩S∗)

ψi(N,αw(T,∅),∅).

We remember that ψi(N,αw(T,∅),∅) = α
|T | because, when S

∗ = ∅ :∑
i∈N

ψi(N,αw(T,∅),∅)= αw(T,∅)(N)=
∑
i∈T

ψi(N,αw(T,∅),∅)+
∑
i/∈T

ψi(N,αw(T,∅),∅)

=
∑
i∈T

ψi(N,αw(T,∅),∅) + 0 (following A(5) )

then,
ψi(N,αw(T,∅),∅) =

αw(T,∅)(N)

|T | (following A(4))

= α


|0|
|T |


| 0 |

| 0 |


−1

+
|T\∅|
|T |


|T | = α

|T |

We return now to our equation,∑
i∈T∩S∗

ψi(N,αw(T,S∗), S
∗) = αw(T,S∗)(N)−

∑
i∈(T\T∩S∗)

ψi(N,αw(T,∅),∅)

= α

 |T∩S∗||T |

 | S∗ |

| T ∩ S∗ |

−1 + |T\T∩S∗|
|T |

− | T\T ∩ S∗ | ( α
|T |)

= α

 |T∩S∗||T |

 | S∗ |

| T ∩ S∗ |

−1 .

Following A(4), any player i ∈ T ∩ S∗ will have

α


|T∩S∗|
|T |


| S∗ |

| T ∩ S∗ |


−1

|T∩S∗| =

α



| S∗ |

| T ∩ S∗ |


−1

|T |
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By A(3), any player i ∈ T\T ∩ S∗ will have
α(
|T\T∩S∗|
|T | )

|T\T∩S∗| = α
|T | .

ψi(N,αw(T,S∗), S
∗) =


α



| S∗ |

| T ∩ S∗ |


−1

|T | i ∈ T ∩ S∗
α
|T | i ∈ T\T ∩ S∗

0 i /∈ T
This proves that ψ(N,αwT,S∗ , S∗) is uniquely defined.

And because of Add, there is a unique value function that satisfies the used
axioms.
Let now v ∈ GN . From lemma 1 (pt 4),v(S) =

∑
T⊆N\∅

αTwT,S∗(S) then,

ψi(v) = ψi(
∑

T⊆N\∅

αTwT,S∗(.)).

From A (2)

ψi(v) =
∑

T⊆N\∅

ψi(N,αTwT,S∗ , S
∗) then, ψi(v) is unique.

�

We now turn to show the existence of the free solidarity value. Let (N, v, S∗)
a TU game and we consider our proposed solution, defined by (3). We are going
to check whether this allocation satisfies the axioms.

• Eff:

We now that Shapley value satisfies efficiency:∑
i∈N

Shi(N, v) = 1

but ∑
i∈N

ξi(N, v, S
∗) =

∑
i∈S∗

ξi(N, v, S
∗) +

∑
i/∈S∗

ξi(N, v, S
∗) =

∑
i∈S∗

ξi(N, v) +
∑
i/∈S∗

Shi(N, v).

Therefore it suffice to prove that∑
i∈S∗

ξi(N, v) =
∑
i∈S∗

Shi(N, v)

Otherwise it suffice to prove that

0 =
∑
i∈S∗

∑
S3i

(n− s)!(s− 1)!

n!

(
v(S)− v(S\{i})− 1

| S ∩ S∗ |
(
∑

k∈S∩S∗
(V (S)− V (S\k))

)
=
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∑
i∈S∗

∑
S3i

(n− s)!(s− 1)!

n!

(
1

| S ∩ S∗ |
(
∑

k∈S∩S∗
(V (S\k)− V (S\i))

)
=

∑
S3i

(n− s)!(s− 1)!

n!

(
1

| S ∩ S∗ |
∑
i∈S∗

(
∑

k∈S∩S∗
(V (S\k)− V (S\i))

)
=

(n− s)!(s− 1)!

n!

(
1

| S ∩ S∗ |
∑

i∈S∩S∗
(
∑

k∈S∩S∗
(V (S\k)− V (S\i))

)
=

(n− s)!(s− 1)!

n!

(
1

| S ∩ S∗ |

(
| S ∩ S∗ |

∑
k∈S∩S∗

V (S\k)− | S ∩ S∗ |
∑

i∈S∩S∗
(V (S\i))

))
= 0

Which proves that ζ(N, v, S∗) is an efficient value.

• Cond-null: Let i be a Cond-null player:

1. If i ∈ S∗, i.e., ∀S ⊆ N, i ∈ (S ∩ S∗) 6= ∅ : C̃av
i (v, S) = 0.

So in this case, ξi(N, v, S∗) =
∑

i∈(S∩S∗)6=∅

(n−s)!(s−1)!
n!

[C̃av
i (v, S)] = 0.

2. - If i /∈ S∗ ,i.e, ∀S ⊆ N, i ∈ (S\(S ∩ S∗)), Ci(v, S) = 0

So ξi(N, v, S∗) =
∑
S3i

(n−s)!(s−1)!
n!

[Ci(v, S)] = 0.

Thus, free solidarity value satisfies Cond-null axiom, when i ∈ S∗or when
i /∈ S∗.

• Cond Sym: Let i and j be conditional symmetric players :

by A(4), for all S ⊆ N\{i, j} we have v(S ∪ {i}) = v(S ∪ {j}).

1. if i, j /∈ S∗:

ξi(N, v, S
∗) = Shi(N, v) =

∑
S3i

(n− s)!(s− 1)!

n!
[v(S)− v(S\{i}]

Which can be written as:

Shi(N, v) =
∑
i,j /∈S

(n− s− 1)!(s)!

n!
[v(S ∪ i)− v(S)]+

∑
i,j /∈S

(n− s− 2)!(s+ 1)!

n!
[v(S ∪ i ∪ j)− v(S ∪ j)]

As v(S ∪ i) = v(S ∪ j) for each coalition S not containing i and j. Then
ξi(N, v, S

∗) = ξj(N, v, S
∗); Free solidarity value satisfies Cond Sym when

i, j /∈ S∗.
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2. if (i, j) ∈ S∗ we have:

ξi(N, v, S
∗) =

∑
S3i

(n− s)!(s− 1)!

n!

(
1

| S ∩ S∗ |
∑

k∈S∩S∗
[v(S)− v(S\{k}]

)
=

∑
i/∈S

(n− s− 1)!(s)!

n!

(
1

| S ∩ S∗ | +1

∑
k∈S∪i∩S∗

[v(S ∪ i)− v(S ∪ i\{k}]

)
=

∑
i/∈S

(n− s− 1)!(s)!

n!

(
1

| S ∩ S∗ | +1

( ∑
k∈S∩S∗,k 6=i

[v(S ∪ i)− v(S\{k} ∪ i)] + v(S ∪ i)− v(S)

))

Now as v(S∪i) = v(S∪i) and v(S\{k}∪i) = v(S\{k}∪j), then ξi(N, v, S∗) =
ξj(N, v, S

∗). Free solidarity value satisfies Cond Sym when (i, j) ∈ S∗2.

• Unaffected Allocation of non-solidary players - (UA):

let a game (N, v, S∗)∈ GN , for all i /∈ S∗, we have ;

ψi(N, v, S
∗) =

∑
i∈S⊆N

(n−s)!(s−1)!
n!

[v(S, S∗)− v(S\{i}, S∗)]

=
∑
i∈S⊆N

(n−s)!(s−1)!
n!

[v(S,∅)− v(S\{i}),∅)] = ψi(N, v,∅)

• Add : ξ is linear, so Add is satisfied.

�
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Discussion and concluding remarks
According to the value of Shapley, the players behave in a individual way. Every
player will have a value which depends only on its own marginal contribution in
the coalitions which may form. The value of agent i in coalition S is the average
marginal value over all possible orders in which the agents may join the coalition.

For Nowak and Radzik (1994), all the players behave in a solidarity way. The
players, who contribute to the coalitions more than the average marginal contri-
bution, should support their weaker partners. Formally the solidarity value for a
player i appears as a weighted sum of the average contribution of all coalitions of
player in the game.

As here conceived, the principle of solidarity in this work is free: each player
can give a portion of his payments and so can promote (increase satisfaction of)
one or more players without disadvantaging other players in the game.

We showed that the free solidarity value can improve the solution of Shapley
and the one of Nowak and Radzik. The solidary players are not punished, because
they agree to help their weaker partners (by consent) and therefore they are going
to be able to master their act of solidarity to remain at least as satisfied as possible.

Solidarity is thus far from being mandatory: rather, it is a natural act and
decided before the game. To present this, we assumed that an exogenous coalition
is freely formed before the game begins and includes solidary players.

Thus, throughout this paper, it has been shown that taking into account the
possible existence of an exogenous coalition of solidary players, changes and some-
what improves the issue of sharing. Calculation formulas were presented, based
on both the solidarity value of Nowak and Radzik and the Shapley value. In order
to take into account this type of coalition, we have supplied, using an axiomatic
approach, a new interpretation of Shapley-Solidarity technique for sharing, named
free solidarity value.
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