
W
or

ki
n

g
 P

ap
er

U
ni

ve
rs

it
y 

of
 R

en
ne

s 
1

U
ni

ve
rs

it
y 

of
 C

ae
n

 
 

Centre de Recherche en Économie et Management
Center for Research in Economics and Management

W
or

ki
n

g
 P

ap
er

U
ni

ve
rs

it
y 

of
 R

en
ne

s 
1

U
ni

ve
rs

it
y 

of
 C

ae
n

Sequential screening with privately known 
characteristics of cost distribution

Daniel Danau
University of Caen Basse-Normandie, CREM CNRS UMR 6211, France

Annalisa Vinella
Università degli Studi di Bari «Aldo Moro», Italy

January 2015 - WP 2015-02

Centre de Recherche en Économie et Management
Center for Research in Economics and Management



Sequential screening with privately known

characteristics of cost distribution

Daniel Danau� Annalisa Vinellay

Abstract

We consider a sequential screening problem where, in the contracting stage, the agent
has private information on both the expected value and the spread of the unit cost of
production. As the principal�s marginal surplus function becomes less concave / more
convex in consumption units, information rents and quantity distortions in the optimal
contract re�ect progressively stronger concerns with the agent being eager to misrepresent
the spread rather than the expected value. As long as marginal surplus is not very con-
vex, relevant incentives to lie on each of the two information dimensions taken separately
go in the same direction as in sequential screening problems where only the expected
value, or only the spread, is privately known. Otherwise, unusual incentives come to
matter. None of the contractual solutions, which are found for di¤erent principal�s pref-
erences, reduces to familiar sequential screening mechanisms (Riordan and Sappington,
1987; Courty and Li, 2000). The solution is reminiscent of a multidimensional screening
mechanism (Armstrong and Rochet, 1999) only if marginal surplus is su¢ ciently convex.
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1 Introduction

MOTIVATION AND AIM

In the literature on agency problems, there is now a number of studies on contractual

design in situations where the agent observes privately a signal about the distribution of some

variable which matters in the relationship with the principal. That signal is taken to be either

the expected value of the variable (as in Riordan and Sappington [34], Courty and Li [8], Eso

and Szentes [13], Krahmer and Strausz [23]) or, alternatively, the spread of the variable around

the mean (as in Courty and Li [8], Dai et al. [9], Ho¤mann and Inderst [19]).1 However, it

is natural that, if an agent can form more accurate forecasts than the principal, then he will

enjoy an information advantage on both the characteristics of the distribution of the relevant

variable, namely the expected value and the spread, rather than only one of them.2

In the delegation of public works or services, including transportation, energy, water and

information technology, there are many concerns about errors made in the forecast of future

demand and costs, and it is generally argued that errors widely mirror incentive problems (see

Flyvbjerg [14]). Looking at transportation policy and planning, Flyvbjerg [14] and Flyvbjerg

et al. [15] - [16] �nd that estimations are largely inaccurate and argue that an important

part of inaccuracy is explained by strategic misrepresentation. To understand why and how

delegated �rms might want to manipulate forecasts, it should be considered that they present

feasibility analyses to delegating authorities. Such analyses contain an estimate of the entire

distribution of the unknown variable, including both the expected value and the spread, on the

basis of which contractual terms are then determined. Having these situations in mind, in this

study we attempt to understand the incentives to camou�age forecasts that an agent might

have vis-à-vis the principal when he observes privately both the mean and the spread of the

distribution of the unknown variable, which we take to be the cost of production. We further

aim at assessing the implications that this informational advantage has on contractual design.

In environments where the agent observes a signal about the distribution of the relevant

variable before the contract is signed, it is very likely that he will also learn the realized value

in a later stage. A sequential learning process takes place, involving that it is optimal for the

principal to screen the agent in subsequent stages.3 Studying sequential screening in monopoly

franchising, Riordan and Sappington [34] show that an information rent is to be conceded to

the franchisee-�rm for not exaggerating the expected cost in the contracting stage and for not

pretending to operate at a high cost in a later stage, if a low cost is realized instead. To contain

that rent, production is optimally decreased below its e¢ cient level for any cost realization,

provided that the expected cost is high.4 Referring to other contexts, Courty and Li [8] and a

1Speci�cally, in the former bunch of papers, distributions are ranked in the sense of �rst-order stochastic
dominance; in the latter, they are ranked in the sense of mean-preserving spread.

2In line with this is the observation made by Ho¤mann and Inderst [19] in the conclusion to their study.
3As Myerson [33] shows, the principal should require the agent to provide a report every time he acquires

some new piece of information during the execution of the contract.
4In the literature on delegation of activities developed thereafter, the concern with how to screen a delegated

�rm that acquires new information in subsequent stages is little present. That literature evolves in two main

2



few articles thereafter �nd that, when the agent is privately informed about the spread of the

variable, he has incentives to understate it. Consequently, the principal gives up an information

rent when the values of the unknown variable are little spread around the mean and, to contain

that rent, she sets the associated volumes of trade such that the gap between them is decreased

below its e¢ cient level. It remains unclear which incentives an agent has to (mis)represent the

expected value and the spread of the unknown variable in situations where he observes the two

of them privately, and how contractual design is then a¤ected. We contribute to the literature

by exploring these issues.

Our analytical framework is as follows. The principal o¤ers a contract to an agent for the

provision of some good or service and, as standard in sequential screening models, the parties

fully commit to the contract so that individual rationality can be required from an ex-ante

perspective only. Four cost distributions are known to be possible; in each distribution the cost

can take two values which are symmetric around the mean and can be realized with equal prob-

abilities. The agent observes the distribution privately before contracting with the principal.

Thus, the principal handles four possible types when the contract is drawn up, leading to eight

possible cost values thereafter.5 By considering this information structure, we bridge the litera-

ture on sequential screening problems with that on multidimensional information issues where,

in the contracting stage, the agent holds more than one piece of information concerning either

one activity (Armstrong [1], Asker and Cantillon [3]) or two activities (Dana [10], Armstrong

and Rochet [2]). In so doing, we bring novel elements to either domain of literature. On the

one hand, unlike in studies on sequential screening, distributions can be ranked neither in the

sense of �rst-order stochastic dominance nor in the sense of mean-preserving spread.6 On the

other hand, unlike in multidimensional screening models, private knowledge is about the char-

acteristics of some distribution. The circumstance that the two pieces of information pertain

to one distribution causes analytical complications and introduces speci�cities in contractual

design as compared to static multidimensional settings.

MAIN RESULTS

Information rents and production distortions In standard screening problems with

one dimension of private information à la Baron and Myerson [5], higher-order types have

stronger incentives to report adjacent than non-adjacent lower-order types. This is because the

strands. The �rst strand includes models where the �rm decides whether to take some action before learning the
true cost, or the decision is delayed until after the cost is realized (Kjerstad and Vagstad [21], Board [6], Mougeot
and Naegelen [32]). The second strand includes models on cost overruns, where the �rm is privately informed
on the expected cost in the delegation stage, whereas the true cost is observed publicly in a subsequent stage
(Spulber [37], Chen and Smith [7]). The issue of cost overruns is also argued to be critical in recent studies
on public-private partnerships. However, in the latter, the expected cost is commonly known, whereas its
realization is observed privately by the �rm (La¤ont [25], Guasch et al. [17] - [18], Iossa and Martimort [20],
Danau and Vinella [11]).

5The literature typically assumes that the values of the distribution of the unknown variable are drawn from
a continuous range rather than a discrete set. In our study, restricting attention to discrete values is functional
to determining the whole bulk of solutions to the screening problem and to developing a comparative analysis.

6The fact that having no complete ordering of distributions complicates screening problems is fairly known
in the literature. See Rochet and Stole [35] for a comment on this point.
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information rents they would receive for not mimicking non-adjacent types are included in those

they receive for not mimicking adjacent types, hence they anyway appropriate those bene�ts.

The same occurs in screening problems with multiple but uncorrelated information dimensions,

as illustrated in Armstrong and Rochet [2]. In fact, a screening problem with this information

structure is simply twice a replica of a unidimensional screening problem. In our framework,

although mean and spread are uncorrelated in each cost distribution, this kind of result cannot

arise. There are various possible combinations of binding incentive constraints, not necessarily

corresponding to adjacent types; accordingly, there are various possible contractual solutions

to the principal�s screening problem. Which exact solution arises depends on the shape of the

marginal surplus function. This follows from the circumstance that the two pieces of information

blended together in each type pertain to the same cost distribution.

By looking at the whole bulk of possible solutions to the screening problem, we deduce

that, as the marginal surplus function becomes less concave / more convex, the principal is

increasingly more concerned with eliminating incentives to mimic adjacent rather than non-

adjacent types. Consequently, the less concave / more convex is marginal surplus, the more

rents the principal must concede to elicit information on the spread rather than on the expected

value of the cost. In turn, production distortions induced to contain rents conceded to prevent

misrepresentation of the spread become increasingly more important than those induced to

contain rents conceded to prevent misrepresentation of the expected cost. The screening prob-

lem reduces to a standard multidimensional screening problem, as in Armstrong and Rochet

[2], if and only if the marginal surplus function is su¢ ciently convex. On the other hand, as

we clarify below, there is no solution coinciding with the contractual allocation that is optimal

in a sequential screening problem with unidimensional information.

(Un)usual incentives to misrepresent information The information issues the principal

faces in our setting are similar, in general, to those detected in sequential screening models

where private information concerns either the expected value or the spread of the unknown

variable, not both. Broadly speaking, unless incentives to truthtell are provided, the agent

is tempted to exaggerate the expected cost vis-à-vis the principal; on the other hand, he is

tempted to understate the spread of the cost. However, in our framework, "unusual" incentives

appear when the marginal surplus function is su¢ ciently convex.

First, when dealing with a low-expected-cost but high-spread agent, the principal is more

concerned with preventing understatement of the spread rather than exaggeration of the ex-

pected cost. This result suggests that a principal whose marginal surplus is su¢ ciently convex

does not need to be particularly concerned with the incentives to overstate the expected cost

of an agent displaying a low expected cost, as is usually the case in the literature, provided

that the agent also observes a high spread. A more important issue comes from the temptation

that an agent may have to understate the spread when this is high and the expected cost is low

instead. The intuition is as follows. When marginal surplus is su¢ ciently convex, the principal

prefers to associate well di¤erentiated production levels to the two possible cost realizations
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of each distribution. A high gap between production levels in a given cost distribution comes

along with a low expected total cost. This motivates the agent to pretend that he forecasts a

high total cost by understating the spread, rather than overstating the expected unit cost.

Second, provided the principal prefers a low-expected-cost low-spread agent to a high-

expected-cost high-spread agent, the former type has incentives to exaggerate not only the

expected cost but also the spread. This �nding is in contrast with other sequential screening

problems, where types are ordered in the sense of mean-preserving spread. It is rooted in the cir-

cumstance that, in addition to the preference on the production schedule previously described,

the principal has also a second preference, i.e., associate more dispersed production levels with

more dispersed cost values within a given distribution. Designing a production schedule with

this characteristic makes it more di¢ cult to elicit information from a low-expected-cost low-

spread agent, involving that a rent must be conceded to prevent exaggeration of the spread on

top of the expected cost.

No contractual solution collapses onto a sequential screening mechanism with uni-
dimensional information When presenting the �rst result, we emphasized that, in situ-

ations where the marginal surplus function is su¢ ciently convex, the optimal mechanism is

similar to the contractual solution to a multidimensional screening problem. On the other

hand, there is no such similarity with sequential screening mechanisms. Despite that "un-

usual" incentives to camou�age information are found to arise only when marginal surplus is

su¢ ciently convex, as we illustrated, distortions are related to the possibility of cheating on

the two information pieces at once in all solutions the screening problem can take. Indeed,

when distorting expected output away from the e¢ cient level for some type of agent to contain

the rent given up to prevent lies on the expected cost, the principal can adjust the production

levels associated with the two possible cost values to a di¤erent extent. The exact balance of

the two adjustments cannot be chosen without also considering incentives to misrepresent the

spread. In other words, a fundamental link is detected between the e¢ ciency/rent-extraction

trade-o¤ that the principal faces due to the information problem on the expected cost and

the e¢ ciency/rent-extraction trade-o¤ that she faces due to the information problem on the

spread. Actually, this is the root of the plurality of solutions that the problem of the principal

has, depending upon her preferences for the good.

1.1 Outline

The remainder of the article is organized as follows. In section 2, we describe the model and

formalize the principal�s problem. In section 3, we identify the two reduced problems on which

we can rely to determine the solution to the general problem. The solution is characterized in

section 4 for di¤erent shapes of the marginal surplus function. After presenting general results

in section 5, we suggest how to make practical use of them in section 6. Section 7 o¤ers a

comparison of results with the mainly related literature. Section 8 concludes. Mathematical

details are relegated to an appendix.
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2 The model

Consider a principal (P) who delegates an activity to an agent for the provision of some

good or service. Production of y units of the good is compensated with a payment of t:

Consumption of y units yields a gross surplus of S (y) ; where S (0) = 0 and S (�) is twice
continuously di¤erentiable and such that S 0 (�) > 0 and S 00 (�) < 0: The relationship between
P and the agent takes place in two stages. In the �rst stage, the contract is signed and

parties fully commit to it. The agent has private information on the exogenous parameters of

the distribution of the unit production cost, say due to the expertise previously acquired by

running similar activities. The parameters of the distribution are the expected value � and the

spread �; they are independent of each other. However, it is commonly known that � takes

values in the set f�L; �Hg ; where �H > �L > 0; with probabilities � and 1� �; � takes values
in the set f�L; �Hg ; where �H > �L > 0; with probabilities � and 1� �: In the second stage,
the unit cost is realized. It is either � � � or � + � with equal probabilities. With this simple
speci�cation, the true cost is entirely determined by its mean value plus an independent noise.7

The agent observes privately whether the true value of the unit cost diverges from the mean

value in a good sense (" � ") or in a bad sense (" + "): Then, he produces the good and is
compensated by P according to the contract.

2.1 The principal�s problem

The objective of P is to attain the largest expected surplus net of the payment to the agent.

To that end, P o¤ers to the agent an incentive contract which includes, for each initial type ij 2
� � fLL;LH;HL;HHg ; the pair of allocations

�
fy

ij
; tijg;

�
yij; tij

	�
; depending on whether

the second-stage shock is good or bad (hence, respectively, the �nal cost is �i � �j or �i + �j):
Accordingly, the type�ij pro�t is either �ij = tij � (�i � �j) yij or �ij = tij � (�i + �j) yij: To
induce the agent to report the observed shock correctly in the second stage, conditional on the

deliver of a truthful report ij in the �rst stage, P must design pro�ts in compliance with the

following second-stage incentive constraints:

icij : �ij � �ij + 2�jyij; 8ij 2 �
icij : �ij � �ij � 2�jyij; 8ij 2 �:

Meeting these constraints requires satisfying the monotonicity condition y
ij
� yij for all ij:

Assuming no discounting, in expectation the agent obtains �ij = 1
2
(�ij + �ij):

8 To also induce

the agent to report his type correctly in the �rst stage, P must design expected pro�ts in

7The assumption that the stochastic variable is additive in mean and spread and that the latter are inde-
pendent of each other is also made by Courty and Li [8], Eso and Szentes [13] (Example 1) and Ho¤mann and
Inderst [19]. Krahmer and Strausz [23] model the cost as a sum of a signal privately known in the �rst stage
and a random shock realized in the second stage, mainly focusing on the case where the distribution of the
shock is independent of the signal.

8The assumption of no discounting is without loss of generality as payo¤s depend on the second-stage
production levels and transfers.
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compliance with the following �rst-stage incentive constraints:9

ICi
0j0

ij : �ij �
1

2
max

n
�i0j0 + (�i0 � �i + �j0 � �j) yi0j0 ; �i0j0 + (�i0 � �i � �j0 � �j) yi0j0

o
+
1

2
max

n
�i0j0 + (�i0 � �i + �j � �j0) yi0j0 ; �i0j0 + (�i0 � �i + �j0 + �j) yi0j0

o
;

8ij;8i0j0 2 �:

This formulation takes into account that, when selecting the report to be made in the �rst

stage, the agent anticipates that it will either truthtell or lie in the second stage. Conditional

on the �rst-stage type being ij; any second-stage cost value other than �i � �j and �i + �j
has zero probability. This has two implications. First, in the second stage, P does not need

to require the agent to report the cost realization but only the shock, namely, "� " or " + ":
The number of incentive constraints would otherwise be unnecessarily large. Second, the agent

has the possibility of coordinating lies between �rst and second stage. This issue is common

in sequential screening problems where the support of �nal values is type-dependent, involv-

ing that the number of �rst-stage incentive constraints is likely to be richer. To circumvent

this di¢ culty, the literature systematically assumes that the support of �nal values is non-

shifting across distributions.10 In our setting, it is not possible to have a non-shifting support

because expected value and spread are independent of each other, and, at the same time,

the realized cost cannot be allowed to take negative values. It can nonetheless be shown that

inter-temporally coordinated lies are unattractive for the agent when the degree of uncertainty

about the expected cost is su¢ ciently small, i.e. �H � �L � 2�L (see appendix A). As we

are interested to understand how the optimal contract in our framework diverges from usual

sequential screening mechanisms, we focus on situations where this condition does hold so as

to avoid concerns associated with o¤-the-equilibrium path lying.11

Once quantities are set to satisfy monotonicity conditions, transfers tij and tij; hence pro�ts

�ij and �ij; can be found such that, if the resulting expected pro�t �ij satis�es IC
i0j0

ij ; then icij
and icij are met as well. Let qij � 1

2
(y
ij
+yij) be the expected output and rij � 1

2
(y
ij
�yij) the

expected output di¤erence for type ij: The problem of P, denoted �; is formulated as follows:

Max
fqij ;rij ;�ijg

X
ij2�

Eij
��
1

2
(S(qij + rij) + S(qij � rij))� (�iqij � �jrij)

�
� �ij

�
subject to8><>:

rij � 0; 8ij
ICi

0j0

ij : �ij � �i0j0 + (�i0 � �i) qij + (�j � �j0)rij; 8ij;8i0j0

PCij : �ij � 0; 8ij
:

9In our notation, ij 6= i0j0 indicates that either i 6= i0 or j 6= j0 or both.
10An exception is the study of Khramer and Strausz [22].
11As remarked by Courty and Li [8] (footnote 7), in a setting with a continuum of values the assumption of

non-shifting support could be relaxed to only require that supports of di¤erent distributions overlap su¢ ciently.
The assumption we make is the counterpart for that requirement in a model with discrete types.
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The payo¤ of P includes the expected surplus obtained, for all possible types, from con-

sumption of qij + rij units of the good, if the shock is found to be good, and of qij � rij units
of the good, if the shock is found to be bad. This surplus is diminished by the expected cost

of production �iqij � �jrij and the expected rent �ij to be conceded for information release.
The incentive constraint ICi

0j0

ij ensures that an agent of type ij is not tempted to mimic some

other type i0j0 in the �rst stage, whether he is going to truthtell or lie in the second stage, as

previously explained. The participation constraint PCij further ensures that an agent of type

ij is willing to enter the contract with P, being allowed to break even when he is informed of

his type but not yet informed of the �nal cost. We omit the incentive constraints whereby an

agent of type ij has no incentives to misrepresent information in the second stage following a

�rst-stage lie as, under the assumption previously made, they are implied by ICi
0j0

ij ; icij; and

icij: This stems from the Revelation Principle for multistage games, according to which one

can restrict attention to reports that are conditional on truthtelling in the previous period for

information release to be induced in the subsequent period (Myerson [33]).

If participation constraints could be saturated for all types, then P would be able to e¤ect the

�rst-best allocation (henceforth, FB). Appending stars to denote FB values, this is de�ned by

the following set of conditions: ��ij = 0; S
0(q�ij+r

�
ij) = �i��j; S 0(q�ij�r�ij) = �i+�j; 8ij:However,

inspection of incentive constraints evidences that this allocation cannot be implemented. As

usual in screening problems, quantity distortions will appear at optimum, trading o¤ e¢ ciency

losses against rent extraction. What is peculiar to our framework is that this trade-o¤ depends

critically on the curvature of the marginal surplus function. Intuitively, if the expected quantity

qij is distorted downwards at the aim of containing the rents designed to avoid cheating on �;

then the expected surplus is decreased by an amount of 1
2
[S 0(qij + rij) + S

0(qij � rij)] : This is
not the only e¤ect though. In addition, a second e¤ect is caused on the expected di¤erence

between the surplus created when the shock is good, namely S(qij + rij); and the surplus

created when the shock is bad, namely S(qij � rij): This e¤ect is speci�cally measured by a
marginal change of 1

2
[S 0(qij + rij)� S 0(qij � rij)] : To see why this is important, observe that,

in fact, this amount measures the marginal loss in expected surplus that follows when rij is

decreased at the aim of containing the rents conceded to prevent lies on �: Because of this, the

trade-o¤ between e¢ ciency loss and extraction of the rents designed to induce truthtelling on

� indirectly a¤ects the trade-o¤ between e¢ ciency loss and extraction of the rents designed to

induce truthtelling on �; and vice versa. While output levels qij+rij and qij�rij are distributed
symmetrically around their mean value of qij; surplus values associated with those levels are

not, in general, and the resulting asymmetry depends on the curvature of S 0 (�) :
Understanding how the shape of S 0 (�) a¤ects the contractual solution is a core issue in our

study. This issue is found neither in sequential screening problems, where private information

is unidimensional, nor in multidimensional screening problems, where the di¤erent pieces of

information do not refer to the distribution of one same variable. To make progress with the

analysis, we �rst investigate which incentive constraints are potentially binding in �:12

12In consumption theory, the behaviour of the marginal utility function with respect to consumption units
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3 Reduced problems

For any given type ij; the expected total cost, namely �iqij � �jrij; increases with the ex-
pected unit cost �i and decreases with the cost variability �j; provided that rij > 0: Thus, P

is better o¤ when she faces an agent with lower expected unit cost and/or higher spread. In

particular, P prefers a high spread because production levels in each cost distribution must

satisfy the second-stage monotonicity condition. This involves that, in each distribution, total

costs, unlike unit costs, are asymmetric around the mean value, and that the divergence from

the latter is more pronounced when the shock is good rather than bad.13 It follows that types

LH and HL are, respectively, the best and the worst type for P. It remains to clarify the order-

ing of types LL and HH: We make the reasonable assumption that the degree of uncertainty

about the expected unit cost is more important than that about the spread. Formally, this is

tantamount to requiring that �� > ��; where �� = �H��L and �� = �H��L: Consequently,
P prefers a low-expected-cost and low-spread agent to a high-expected-cost and high-spread

agent.14 The overall type ordering is as follows:

LH � LL � HH � HL: (1)

Remarkably, unlike in the literature on sequential screening, distributions ij are ordered neither

in the sense of �rst-order stochastic dominance nor in the sense of mean preserving spread.

The mean value of the unit cost is lower for types Lj than for types Hj; it is equal for types iH

and types iL: However, there is no stochastic dominance condition according to which the four

distributions can be ordered altogether. Our stylized representation with discrete types enables

us to overcome this limit with the identi�cation of the type ordering in (1). Henceforth, for

convenience, we refer to (1) as to an "e¢ ciency" ordering; accordingly, LH is the most e¢ cient

type, HL the least e¢ cient type, and so on.

Resting on (1), we are able to pin down the downward incentive constraints whereby more

e¢ cient types are not tempted to mimic less e¢ cient types. Speci�cally, type LH might want

to claim LL; HH; or HL; type LL might want to claim either HL or HH; type HH might

want to claim HL: By restricting attention to these incentives, we focus on a reduced problem,

to be denoted �0; in which the participation constraint of the least e¢ cient type is binding and

all incentive constraints but the downward ones are assumed to be slack. Moreover, to keep

the problem interesting, we take the monotonicity condition rij � 0 to be strictly satis�ed.

(the counterpart of which is S0 (�) in our model) a¤ects the trade-o¤ between current consumption and savings
for future consumption that an individual faces when maximizing her expected utility under uncertainty about
future income (see Leland [27], Rothschild and Stiglitz [36], Drèze and Modigliani [12], Menegatti [31]). The
results of that literature have no bite in our framework as the principal does not face a trade-o¤ between �rst-
stage and second-stage quantities, given that production (hence, consumption) takes place only in the second
stage.
13The fact that P prefers a type with a higher spread around the mean is common in the literature.
14In a setting with a continuum of cost values and symmetric distributions (such as normal distributions), this

assumption would involve that P prefers one distribution to another when cost values in the �rst distribution
are all smaller than cost values in the second distribution.
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The conditions under which this is the case will be identi�ed at a later stage. Once we �nd the

solution to �0; we will need to check that it solves � as well. Looking at a reduced problem at

the aim of identifying the solution to the general problem is a similar approach to that usually

followed in multidimensional screening problems (see Armstrong and Rochet [2], for instance).

However, the circumstance that screening concerns two characteristics of one distribution in

our model introduced additional complications in the analysis. This will become apparent in

the sequel of the study. For the time being, we characterize the solution to �0:

Lemma 1 At the solution to �0; information rents are such that:

�HL = 0 (2a)

�HH = ��rHL (2b)

�LL = ��LL;1 + (1� �)�LL;2 (2c)

�LH = 1�LH;1 + 2 [��LH;2 + (1� �)�LH;3] + 3�LH;4; (2d)

where

�LL;1 = ��qHL and �LL;2 = ��qHH ��� (rHH � rHL) (3)

together with

�LH;1 = ��qHH +��rHL; �LH;2 = ��qHL +��rLL; (4)

�LH;3 = ��qHH +��rHL ��� (rHH � rLL) and �LH;4 = ��qHL +��rHL;

and � 2 [0; 1] ; z 2 [0; 1] ; 8z 2 f1; 2; 3g ;
X

z2f1;2;3g

z = 1:

Identifying the downward incentive constraints that are relevant at the solution to �0; hence

the exact information rents to be conceded, is tantamount to identifying the values of the pa-

rameters � and z; 8z 2 f1; 2; 3g : If the problem we study were a standard multidimensional

screening problem with uncorrelated pieces of private information, then relevant incentive con-

straints would be those whereby more e¢ cient types are not tempted to claim adjacent types.15

Formally, the relevant incentive constraints would be ICHHLL and ICLLLH ; meaning that we would

have � = 0 and 2 = 1: However, this does not need to be the case in our framework since iden-

ti�cation of the type ordering does not straightforwardly involve identi�cation of the binding

incentive constraints. This will become apparent in the characterization of the solution below.

Resting on Lemma 1, the quantity solution to �0 can be determined as a function of � and z:

Lemma 2 At the solution to �0; FB production levels are assigned to type LH. Production
15Analogous conclusion is reached in unidimensional screening problems with more than two types. Un-

der some standard conditions, for high-ranked types facing more than one cheating possibility the strongest
temptation is to mimic adjacent types, meaning that global incentive constraints are implied by local incentive
constraints (see section 3.1 in La¤ont and Martimort [26], for instance).
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levels assigned to types LL; HH and HL; respectively, satisfy:

S 0(qLL + rLL) = �L � �L + 2
1� �
�

��

S 0(qLL � rLL) = �L + �L � 2
1� �
�

��;

S 0(qHH + rHH) = �H � �H

+
�

1� �

��
1 + (1� �)

�
2 +

�

1� �

��
�� � (1� �)

�
2 +

�

1� �

�
��

�
S 0(qHH � rHH) = �H + �H

+
�

1� �

��
1 + (1� �)

�
2 +

�

1� �

��
�� + (1� �)

�
2 +

�

1� �

�
��

�
and

S 0(qHL + rHL) = �H � �L

+
�

1� �

��
� + (2� + 3)

1� �
�

�
�� +

�
1� � + (1� �2�)

1� �
��

�
��

�
S 0(qHL � rHL) = �H + �L

+
�

1� �

��
� + (2� + 3)

1� �
�

�
�� �

�
1� � + (1� �2�)

1� �
��

�
��

�
:

As expected, quantities are distorted away from the FB levels for all but the most e¢ cient

type in both states of nature. The next step is to check whether there are circumstances under

which production levels as characterized in Lemma 2 are inconsistent with Lemma 1. It turns

out that this is case when the degree of uncertainty about � is big relative to that about �:

Lemma 3 At the solution to �; types HH and HL are assigned production levels characterized

in Lemma 2 only if:

��

��
<

1
�
+ (�� �)

�
2 +

�
1��

�
���1� 1 � (1� �)�2 + �

1��

���� : (5)

If (5) is satis�ed, then those production levels are such that qHH + rHH > qHL + rHL and

qHH � rHH < qHL � rHL:

FB e¢ ciency requires that production levels assigned to type HH be more spread around

the expected value of q�HH than are spread those assigned to type HL around the expected

value of q�HL: That is, q
�
HH + r

�
HH > q

�
HL + r

�
HL and q

�
HH � r�HH < q�HL � r�HL: This is because

type HH faces a higher spread of the cost around the mean value of �H : Lemma 3 states that,

when uncertainty about the mean is substantially more important than uncertainty about

the spread (i.e., ��=�� is large), output levels no longer re�ect these conditions. In that

situation, to contain the rents designed for type LL not to exaggerate �; P would be more eager

to distort the expected production values of types HH and HL rather than their expected

11



production di¤erences. Speci�cally, she would like to decrease qHH until the point where

qHH + rHH < qHL + rHL; if the relevant temptation of type LL is to claim HH; and qHL until

the point where qHH � rHH > qHL � rHL; if its relevant temptation is to claim HL: In either

case, such a pronounced distortion is not worth in � so that the solution to �0 does not solve

� as well. Take the relevant lie to be HH; for instance. Then, as qHH is decreased, �LL;2 may

fall below �LL;1: However, at that point, any further reduction in qHH is useless: type LL will

anyway pocket the bigger rent. Similarly, when the relevant lie is HL; P cannot extract more

rent by decreasing qHL down to the point where �LL;1 becomes smaller than �LL;2: Therefore,

when ��=�� is su¢ ciently large, the best for P is not to force distortions in qHH and qHL
beyond the point where �LL;1 and �LL;2 are equal, hence ICHLLL and IC

HH
LL are both saturated.

This leads us to consider the next reduced problem, denoted �00; which is tantamount to �0

up to the two additional constraints qHL = qHH and rHL = rHH : Remarkably, bunching types

HH and HL is a way for the principal to avoid inducing more important distortions than are

useful to save on information rents. This result is unusual in the literature, where bunching

of types typically arises when e¢ ciency considerations con�ict with monotonicity conditions

imposed by the incentive constraints of the concerned types, as is the case in agency problems

with countervailing incentives (see Lewis and Sappington [29] and Maggi and Rodriguez-Clare

[30]).16

Lemma 4 At the solution to �00; production levels assigned to types LH and LL are charac-

terized as in Lemma 2. Those assigned to type HH are characterized as follows:

S 0(qHH + rHH) = �H � �H +
�

(1� �) (1� �)�� +
1� 2�
1� � ��

S 0(qHH � rHH) = �H + �H +
�

(1� �) (1� �)�� �
1� 2�
1� � ��:

For type HL; they are such that qHL = qHH and rHL = rHH : Information rents are determined

as in Lemma 1:

4 Characterization of the solution

The next step of analysis is to understand, in each of the two reduced problems, which

incentive constraints are relevant for types LL and LH: To that end, as previously mentioned,

we need to take the preferences of P into account. To keep the analysis tractable and make

progress with it, we assume that the sign of S 000 (�) is invariant for all consumption levels for
which marginal surplus is strictly positive.17 The next lemma completes the list of properties

16The monotonicity condition imposed by ICHLHH and ICHHHL is rHH � rHL. As we show in appendix
B.3, if (5) is violated, then the solution to �0 is such that either qHH + rHH > qHL + rHL together with
qHH � rHH > qHL� rHL; or qHH + rHH < qHL+ rHL together with qHH � rHH < qHL� rHL: Neither of these
pairs of conditions implies that the monotonicity condition is violated.
17This is a usual assumption in theoretical models on consumption decisions under uncertainty, where the

shape of the marginal utility function is core to the trade-o¤ between current and future consumption.
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of the surplus function.

Lemma 5 S 000 (�) < 0 only if (i) 9Y such that 0 < Y < 1 and S 0 (y) = 0;8y 2 [Y;1) ; and
(ii) lim

y!0
S 00 (y) > �1.

From Menegatti [31] we know that, when Y ! 1; S 0 (�) is convex. In line with that
result, for S 0 (�) to be also possibly concave, it must be the case that Y is �nite. The lemma

states that, in addition, it is also necessary that lim
y!0
S 00 (y) > �1. Henceforth, we take the

two conditions in Lemma 5 to be satis�ed. This is without loss of generality in that it simply

enables us to admit any shape of S 0 (�) in the analysis. If any such condition were not met,
then, out of the solutions presented below, we would only be left with those arising for S 0 (�)
convex. There are two further points to make when the conditions in Lemma 5 hold. First,

the surplus function does not satisfy the Inada conditions, involving that an interior solution

may not exist. However, as investigation of corner solutions would not add much insight to our

study, we neglect them and take all solution quantities to belong to the interval (0; Y ) : Second,

if S 000 (by) increases/decreases for some given by 2 (0; Y ) ; then so does S 000 (y) for all y 2 (0; Y ) :
Henceforth, for sake of simplicity, we use the notation S 000 (by) � � as a measure of the degree
of concavity/convexity of S 0(�):

Lemma 6 De�ne S 0(y) = a; and f (a) = y the inverse function of S 0 (y) : Suppose that a1 > a2;
a3 > a4; a2 > a4: Then, the di¤erence [f (a4)� f (a3)] � [f (a2)� f (a1)] increases with �:
Moreover:

1) if a3�a4 < a1�a2; then there exists at most one value "1 > 0 such that f (a4)�f (a3) =
f (a2)� f (a1) for � = "1;
2) if a3�a4 � a1�a2; then there exists at most one value "2 < 0 such that f (a4)�f (a3) =

f (a2)� f (a1) for � = "2:

For brevity we use the notation S 0(qij + rij) � a+ij and S 0(qij � rij) � a�ij; 8ij 2 �; to refer
to the quantity solution in Lemma 2 or Lemma 4, depending on whether problem �0 or �00 is

concerned. The values f(a+ij) and f(a
�
ij) respectively represent the production levels qij + rij

and qij � rij at the solution to �0 or �00: Hence, for any two types ij and i0j0; one can refer to
the wedges f(a+ij) � f(a+i0j0) and f(a�ij) � f(a�i0j0) to compare rij with ri0j0 ; and to the wedges
f(a+ij)� f(a+i0j0) and f(a�i0j0)� f(a�ij) to compare qij with qi0j0 : Accordingly, Lemma 6 identi�es
the exact link between the shape of the marginal surplus function and the information rents

which are contained by distorting production away from e¢ cient levels at the solution to each of

the two reduced problems. Resting on Lemma 6, we can thus determine the relevant incentive

constraints in the reduced problems �0 and �00; as presented in Lemma 7 - 9 below.

Lemma 7 Suppose that (5) holds. At the solution to �0; � > 0 if and only if � � �1; where

�1 > 0 is the highest value of � such that:

rHH � rHL =
��

��
(qHH � qHL) : (6)
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Provided � � �1 is equivalent to �LL;1 � �LL;2; the lemma establishes which of the two

possible rents accrues to type LL at the solution to �0; depending on the preferences of P. As

marginal surplus becomes more convex, P is more and more concerned with the temptation

of type LL to exaggerate not only the expected value (thus claiming HL) but also the spread

of the unit cost (thus claiming HH; instead). This re�ects the increasingly stronger interest

of P to recommend more output, in expected terms, from type HH than from type HL: (6)

determines the value of � as a function of 1; 2 and 3; which are yet to be identi�ed; the

exact value of �1 depends on all these parameters. However, regardless of the particular values

of the parameters, Lemma 7 suggests that there exists a unique value of � that separates the

range of values where �LL;1 � �LL;2 from that where this inequality is violated.

Lemma 8 Suppose that (5) holds. At the solution to �0; 9"H 2 ("LH ; 0) such that qHL = qHH
if and only if � = "H : There exists at most one value "L > 0 such that rLL = rHH :

(i) If "LH � � � "H ; then 3 = 1; 1 = 0 and 2 = 0:
(ii) If � 2 ("H ; "L) ; then 3 = 0; 1 > 0 and 2 > 0:
(iii) If � � "L; then 3 = 0; 1 = 0 and 2 = 1:

As compared to Lemma 7, the cases included in Lemma 8 re�ect the circumstance that the

most e¢ cient type has more cheating possibilities than type LL: These cases are identi�ed by

considering that, according to Lemma 6, the bigger is �; the higher the di¤erences rLL � rHL
and qHH � qHL are set. As long as marginal surplus is su¢ ciently concave (case (i)); these
di¤erences are both negative and ICHLLH is binding. By contrast, when S 0 (�) is linear or nearly
so (case (ii)); the di¤erences rLL�rHL and qHH�qHL are positive but small and ICHLLH becomes
slack, whereas ICLLLH and IC

HH
LH are both binding at the solution to �0. As pointed out with

regards to Lemma 7, the exact values of 1 and 2 are not essential to understand the �nding

in (ii) ; it is yet worth mentioning that they are obtained from the condition 1 + 2 = 1;

together with �LH;1 = �LH;2 if "L � �1; and with �LH;1 = �LH;3 if "L > �1 and � 2 ("L; �1) :
Lastly, when S 0 (�) is su¢ ciently convex (case (iii)); the di¤erence rLL � rHL is big relative to
qHH � qHL and ICHHLH becomes slack in turn. Hence, in this case, the only concern of P with a

LH�agent is that he might want to understate the spread.
We are now left with characterizing the solution to �00 in situations where the values of

� and z; 8z; that are determined at the solutions in Lemma 7 and 8, are such that (5) is
violated. Apart from forcing types HL and HH to produce the same output in order to ensure

that type LL is given up the smallest a¤ordable rent for not mimicking either such type, the

relationship between the shape of the marginal surplus function and the incentives of type

LH that matter for P follows a similar pattern to that described in previous lemmas. Since

qHH = rHH and qHL = rHL in �00; 3 and � become irrelevant and they are conveniently set to

zero. Accordingly, the following lemma is stated.

Lemma 9 Suppose that (5) is violated. 9b"H < 0; b"L > 0 such that rLL < rHH if � < b"H ;
rLL = rHH if � 2 [b"H ;b"L] ; and rLL > rHH if � > b"L:
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(i) If � < b"H ; then 3 = 0; 1 = 1 and 2 = 0:
(ii) If � 2 [b"H ; 0] ; then 3 = 0; 1 > 0 and 2 > 0:
(iii) If � > 0; then 3 = 0; 1 = 0 and 2 = 1:

As above, in case (ii); the exact values of 1 and 2 are found by setting 1 + 2 = 1 and

imposing rLL = rHH to the quantities pinned down in Lemma 4.

The next two lemmas complete the characterization of the contract.

Lemma 10 When (5) is satis�ed, there exists at most one value "LH 2 (�1; "H) such that
if � < "LH then, at the solution to �0; either rHL > rLH or qHL > qLH : When (5) is violated,

there exists at most one value b"LH 2 (�1;b"H) such that if � < b"LH then, at the solution to

�00; either rHL > rLH or qHL > qLH :

Resting on Lemma 10, one cannot exclude the possibility of output being set such that

either rHL � rLH > 0 or qHL � qLH > 0 when marginal surplus is very concave, although the
di¤erence that is positive, out of those two, would be very small in that case.18 With an output

pro�le satisfying these conditions, ICLHHL would be violated in �. This brings an unnecessary

complication, if it is considered that ICLHHL would be "almost satis�ed" with either rHL � rLH
or qHL � qLH very small, and that it is di¢ cult to identify surplus functions with this kind

of property. Thus, in the exposition of results below, we restrict attention to cases where

� � max f"LH ;b"LHg so that:
rLH � rHL and qLH � qHL: (7)

This restriction on � does not a¤ect the �ndings presented in Lemma 7 - 9 since "LH 2 (�1; "H)
and b"LH 2 (�1;b"H) :
Lastly, recall that the second-period monotonicity condition was assumed to be strictly

satis�ed for all types. As a last step, we provide a su¢ cient condition under which this is

actually the case in either reduced problem.

Lemma 11 If
�H
�L

<
1

1� � (1� �) ; (8)

then, at solution to both �0 and �00; rij > 0 8ij 2 �:

When uncertainty about the spread is relatively large in a proportional sense so that (8) is

violated, the contractual solution looses both the multidimensional and the sequential nature.

Inducing information release on �j is so costly that P renounces to screen on it. Only private

information on the expected unit cost is considered in contractual design. The principal�s

problem degenerates onto a static agency problem with two possible initial types, namely �L
and �H ; each being assigned a single production level, regardless of whether the true cost

18In the limit case where � ! �1; S0 (�) has a reversed L-shaped form with S0 (y) ! S0 (0) ;8y 2 (0; Y ) ;
involving that rHL � rLH ! 0 and qHL � qLH ! 0:
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realization is bigger or smaller than initially forecast. In light of this, all results to be drawn

below refer to situations where uncertainty about the spread is relatively small in a proportional

sense so that (8) is satis�ed.

5 Results

To begin with, we check that the solution to each of the reduced problems previously

presented solves the general problem as well.

Proposition 1 Assume that (8) is satis�ed and that � � max f"LH ;b"LHg : For any given value
of � and the associated solution identi�ed in Lemma 7 and 8; there exist values of �; � 2 (0; 1)
such that (5) is satis�ed, and values of �; � 2 (0; 1) such that (5) is violated.
If (5) is satis�ed, then the solution to �0 solves � as well.

If (5) is violated, then the solution to �00 solves � as well.

The proposition con�rms that the general problem can actually be replaced by an appropri-

ate relaxed problem. This evidences that the methodology adopted to solve multidimensional

screening problems also applies to sequential screening problems with a discrete number of

types. This is particularly useful in our setting where working with discrete types facilitates

the task because, unlike in other sequential screening models, there is no complete ordering

of distributions.19 The following corollary pins down the agent�s incentives to misrepresent

information which are relevant for P, as can be deduced from the solutions in Lemma 7 - 9.

With a general view of the relevant incentives, we will then be able to enucleate similarities

and di¤erences with other sequential screening problems.

Corollary 1 In the optimal contract, information rents and production levels re�ect:
(a) incentives to overstate � : of type LL; 8��=��; of type LH; if and only if � � "LL when

(5) holds, and if and only if � � b"LL when (5) is violated;
(b) incentives to understate � : of types HH and LH; 8��=��; 8�;
(c) incentives to overstate � : of type LL; if and only if � � �1 when (5) holds, and 8� when

(5) is violated.

There are two main concerns of P in contractual design, namely the agent�s temptation

to overstate the expected unit cost and/or that to understate the spread (part (a) and (b)

in the corollary). These preoccupations are similar to those usually identi�ed in sequential

screening models where the agent holds private information on either the expected value or the

spread of the unknown variable. However, it is important to notice that, for su¢ ciently convex

marginal surplus, exaggeration of the expected cost by a low-expected-cost high-spread agent

is no longer an issue for P (point (a); cases where � > "LL and � > b"LL): In that situation,
19See also Rochet and Stole [35], who consider an example of sequential screening problem without complete

ordering of distributions. In our model, unlike in their example, global incentive constraints are not necessarily
implied by local incentive constraints.
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indeed, the principal prefers to set more dispersed production levels for each cost distribution.

With this output pro�le, understatement of � becomes more worrisome than overstatement of

�:Moreover, when marginal surplus is su¢ ciently convex, P is concerned with the possibility of

the spread being overstated rather than understated. This preoccupation arises with regards

to an agent facing not only a low spread but also a low expected cost (part (c)); a joint lie on

the two information dimensions representing the strongest temptation for this type (part (a)

and (c) altogether).

Corollary 1 emphasizes that di¤erent shapes of the marginal surplus function mirror, in

fact, di¤erent preferences of P as to how the two production levels should be set for each cost

distribution. The extent to which P is ready to distort production levels to contain agency

costs, depending upon her preferences for the good, is in turn suggestive of how important

private information on one dimension is for P relative to the other. This result is core to our

investigation.

Corollary 2 For all values of ��=��; as � increases, information rents in the optimal con-
tract, and accordingly distortions induced in production levels to contain those rents, re�ect

progressively stronger concerns with the agent misrepresenting � rather than �:

On the one hand, the shape of S 0 (�) dictates how dispersed production levels should be on ef-
�ciency grounds. Increasingly more dispersion is desirable as S 0 (�) becomes less concave / more
convex. On the other hand, for rent-extraction purposes, P prefers to choose production levels

relatively close both across and within cost distributions because this helps her contain agency

costs. Therefore, proceeding from concavity to convexity, the trade-o¤ between e¢ ciency, as

expressed in expected terms over the two second-stage productions, and rent-extraction is ini-

tially loose and then progressively exacerbated. This re�ects an increasing concern with the

possibility of � being misrepresented rather than � as marginal surplus becomes less concave /

more convex. The next two corollaries complete the presentation of results.

Corollary 3 The optimal contract collapses onto a multidimensional (static) screening mech-
anism if and only if S 0 (�) is su¢ ciently convex:
a) in the sense of part (iii) in Lemma 8; if (5) is satis�ed for � = 0 and 2 = 1;

b) in the sense of part (iii) in Lemma 9; if (5) is violated for � = 0 and 2 = 1:

When marginal surplus is su¢ ciently convex, the contractual solution reduces to a multi-

dimensional screening mechanism with uncorrelated types. This is because in that case � = 0

and 2 = 1; involving that adjacent types are the only attractive lies. Results are more com-

plex here since all possible degrees of concavity and convexity of the marginal surplus function

are to be considered. In a multidimensional but static framework, production levels would be

determined in the �rst stage, one for each type. Hence, there would be no need to evaluate

e¢ ciency losses associated with quantity distortions in expected terms. Once again, the shape

of S 0 (�) would be irrelevant in the identi�cation of the rents to be optimally assigned to the
various types, and all cases/solutions to � we identi�ed for di¤erent curvatures of S 0 (�) would
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collapse onto one single case/solution. By this we do not mean that in multidimensional but

static screening problems the principal�s preferences never a¤ect contractual features. Some-

times this does occur, yet in di¤erent ways. In environments where the agent executes two

distinct activities for the principal and has private knowledge of the cost of each activity, it

is the preference symmetry across activities (rather than the shape of the marginal surplus

function) that matters in the optimal contractual choice (Armstrong and Rochet [2]).

Corollary 4 When �� 6= 0 the optimal incentive contract does not reduce to a sequential

(unidimensional) screening mechanism.

The fact that the agent knows privately two pieces of information related to one distribution

involves that the features of the optimal contract are more nuanced as compared to sequential

screening mechanisms usually considered in the literature. One could detect similarities when

the index ��=�� is so large that (5) is violated, because bunching is then induced with

respect to the spread. Another partial similarity lies in the no-distortion-at-the-top result. For

instance, in Riordan and Sappington [34] and Courty and Li [8], the most desirable �rst-stage

type (that would correspond to �L in our model, if private information were only about �) is

assigned the FB trade volume, regardless of the second-stage state of nature. To some extent,

this is found in our analysis as well in that the low-expected-cost agent is actually required to

produce FB output when he faces a high spread. However, when the low-expected-cost agent

faces a low spread instead, this is no longer the optimal policy in situations where marginal

surplus is su¢ ciently convex. Overall, we cannot identify any solutions, among those presented

in Lemma 7 - 9, which reduce to usual sequential screening mechanisms.

6 Discussion

A fundamental prediction of our analysis is that, in agency relationships with the informa-

tion structure here represented, the characteristics of the optimal contract are related �nely to

the principal�s preferences. We now discuss a possible application, having in mind the public

utilities that inspired our investigation.

P can be regarded as the regulator of a �rm providing some good or service in a monopolistic

market. Her goal is to maximize expected consumer surplus net of the compensation owed

to the �rm. In this context, the marginal surplus function is the inverse demand function,

expressing the willingness to pay for any given consumption level. A shift from concavity to

convexity corresponds to a shift from less to more price-elastic demand. As an illustration,

take S (y) = ky � ye+1= (e+ 1) ; where e; k > 0: Then, S 0 (y) � p (y) = k � ye is strictly
concave in y if e > 1; linear if e = 1; strictly convex if e < 1: All else equal, the direct demand

y (p) = (k � p)1=e is less price-elastic the larger e; for any given p: When e is large, hence
demand is little elastic, a price raise triggers a limited reduction in demanded units of the

good. This means that the regulator can a¤ord more important quantity distortions, which

facilitates rent-extraction from the regulated �rm. As e decreases, hence demand becomes more
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elastic, a price raise triggers increasingly bigger reductions in demanded units. This means that

the regulator can a¤ord progressively smaller quantity distortions, which weakens her ability to

extract rents from the regulated �rm. This is in line with Corollary 2, according to which, as

S 0 (�) shifts from concave to convex, P becomes less prone to distort quantities away from FB

levels and tolerates more important agency costs, thus conceding rents to eliminate incentives

to mimic adjacent rather than nonadjacent types.

The relationship between the curvature of the marginal surplus function and the price-

elasticity of market demand suggests a way to make functional use of the insights of our

study along the current regulatory practice. Actually, in markets where the demand function

is only vaguely known to regulators, the latter typically refer to elasticity estimates, which

can be formed with more reasonable accuracy when little information is available on demand

conditions. In regulator/�rm hierarchies where the information structure is as represented in

our model, the regulator could use elasticity estimates to identify the relevant information rents

and set output accordingly. An illustration is provided here below.

Example Table 1 summarizes numerical results that obtain when S (y) = ky� ye+1= (e+ 1)
and k = 15; � = � = 0:3; �L = 4; �H = 5; �L = 3; �H = 3:3; further details on the development

are relegated to appendix D. Condition (5) holds for the two values of e considered. Instead,

condition (29) holds for e = 1; namely when S 0 (�) is linear, whereas it is violated for e = 0:5;
namely when S 0 (�) is su¢ ciently convex in the sense of Lemma 7. Hence, �LL;2 > �LL;1 in

the former case (� = 1) ; �LL;2 < �LL;1 in the latter (� = 0) : That is, as long as demand is

little elastic, ICHLLL is binding and IC
HH
LL is slack; when demand is su¢ ciently elastic, ICHHLL is

binding. In either scenario, �LH;1 = �LH;2 (1 > 0 and 2 > 0):

e 1 2 Condition (5) ��(rHH � rHL) ��(qHH � qHL)
1 0:826 0:174 3:33 < 16:73 0:75 0:5

0:5 0:948 0:052 3:33 < 57:63 15 16:5

Table 1: Numerical results

7 Relation to the literature

Sequential screening

In a sequential screening problem where distributions are ordered in the sense of �rst-order

stochastic dominance, Courty and Li [8] show that, under standard assumptions, distortions

are reminiscent of those arising in static screening problems à la Baron and Myerson [5], with

the caveat that types represent distributions rather than real values. That is, no distortion is

induced for the most desirable type, regardless of the second-stage realization of the unknown

variable; increasingly greater distortions are induced for progressively less desirable types. This

result is in line with that previously obtained by Riordan and Sappington [34] in a context of
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monopoly franchising. Courty and Li [8] further assess that, when distributions are ordered

in the sense of mean-preserving spread, the allocation is fully e¢ cient for the biggest-spread

type, whereas distortions are induced for lower-spread types. Our �ndings highlight that in

situations where types are drawn from four distributions, sharing the same mean and the same

spread two by two, not only are distortions greater for types with greater expected unit cost

and smaller spread; they are also related to the curvature of the marginal surplus function, in

the way identi�ed in Corollary 2.

Multidimensional screening

Armstrong and Rochet [2] o¤er a user guide to solve multidimensional screening problems

where the number of types is discrete, pointing out that it is very di¢ cult to obtain closed-

form solutions in models with a continuum of types. The strategy is to rely on a reduced

problem where only downward incentive constraints (namely, incentive constraints whereby

more desirable types are unwilling to mimic less desirable types) are potentially binding, and

to check that the solution to the reduced problem solves the general problem as well. Our

analysis unveils that, when the problem is both multidimensional and sequential, the way in

which incentives to misrepresent the two �rst-stage information dimensions interact, induces

an unusual dependency of contractual features on principal�s preferences, which makes the

identi�cation of the solution pattern more complex.

Bunching of types

Both in multidimensional and in sequential screening problems bunching of types is some-

times identi�ed. In a multidimensional screening model with discrete types, Armstrong [1]

shows that pooling may arise if the worst type in the principal�s ordering is tempted to mimic

its adjacent better-ranked type. Bunching these types a¤ords weaker distortions to the prin-

cipal when satisfying their incentive constraints. In a sequential screening model with discrete

types, Krahmer and Strausz [22] assess that bunching is likely to appear as one moves away

from the usual assumption that the support of �nal values is independent of �rst-stage private

information. To contain the rent conceded to prevent o¤-the-equilibrium path lying, the princi-

pal would like to induce distortions for the types representing attractive reports, which are yet

too pronounced to satisfy the monotonicity condition imposed by the incentive constraints of

those types. Bunching them is thus necessary in the same fashion as in agency problems with

countervailing incentives (such as Lewis and Sappington [29] and Maggi and Rodriguez-Clare

[30]). While in Armstrong [1] the monotonicity condition imposed by incentive compatibility

prevents the principal from limiting distortions, in Krahmer and Strausz [22] and in the studies

on countervailing incentives it prevents the principal from raising distortions aimed to contain

information rents. Interestingly, in our screening problem, which is both multidimensional and

sequential, the result that high-spread types may be optimally bunched is more in line with

�ndings of multidimensional screening models. Indeed, as in Armstrong [1], bunching types
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is a way for the principal to limit distortions that would not grant further savings on agency

costs. This unveils a reason for bunching in a sequential screening problem other than the

possibility of the agent lying o¤ the equilibrium path, which our assumptions ruled out. Unlike

in Armstrong [1], however, bunching in our framework does not re�ect the mutual temptation

of adjacent types to mimic each other, which hardens a monotonicity condition warranting in-

centive compatibility of the solution. Instead, it mirrors the circumstance that, for some type,

both adjacent and non-adjacent lower-ranked types represent attractive reports, involving that,

for that type, more incentive constraints are relevant at once.

8 Conclusion

Considering a sequential screening problem with multidimensional information in the �rst

stage, we showed that the identi�cation of the optimal solution is less immediate than in typical

multidimensional screening problems. Complications arise because the two �rst-stage pieces

of information are tied together in the distribution of the unknown variable. To characterize

contractual features in this framework, it was fundamental to detect and understand their

dependency on the principal�s preferences.

We assessed that there is no contractual solution collapsing onto the solution to a sequential

screening problem where only one characteristic of the distribution is privately known. On the

other hand, the contractual solution displays similarities with a multidimensional screening

mechanism when the marginal surplus function is su¢ ciently convex. In regulated markets

where demand is elastic to price, this case would be most relevant for regulatory bodies. Con-

sumption theory suggests that this is actually what one should expect most often in practice.

It is noteworthy that this is also the case where private information on the spread is most im-

portant. Our analysis predicts that the primary concern of a principal with su¢ ciently convex

marginal surplus should be to contain information rents conceded to prevent cheating on the

spread of the cost, rather than on its expected value, and that distortions in production should

mirror this concern.

We focused on a simple setting where only four distributions are possible, each including

only two values symmetrically distributed around the mean. On the one hand, this makes

our analysis widely applicable. In particular, each distribution has the characteristics of a

two-periods random walk. On the other hand, the essential content of our results would not

be di¤erent if cost values were distributed asymmetrically around the mean. The pattern

of contractual solutions associated with di¤erent curvatures of the marginal surplus function

would not be dissimilar from the one we identi�ed.

Our investigation was inspired to situations where public activities are delegated to �rms

which might have incentives to manipulate forecasts of initially unknown variables vis-à-vis

appointing and/or regulatory authorities. In practice, such activities are now typically awarded

to �rms by means of tendering procedures. To account for this, we could consider an auction

mechanism rather than looking at an incentive contract. Our choice was not reductive though.
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The insights of our work would not change in that environment since in our model, as in Riordan

and Sappington [34], there would be separability between number of bidders and contractual

allocation.20 Moreover, while we focused on a full-commitment framework, delegation of public

activities sometimes occurs in limited-commitment environments where �rms might camou�age

forecasts in the contracting stage in view of a later renegotiation. To eliminate the perspective

of contractual renegotiation, hence incentives to strategic misrepresentation related to that,

one can think of the principal as being able to credibly engage in future enforcement in the

presence of solid institutions, and of the agent as being motivated to comply with the contract

in the presence of cancellation fees or ex-post participation constraints.21 Contract design

under ex-post participation constraints is analyzed by Spulber [37] and Chen and Smith [7]

in a setting where the �rm has private information on the cost distribution in the contracting

stage but the cost realization is publicly observed in a later stage. Because our aim was to

explore the impact of multidimensional private information in a sequential screening problem,

embodying ex-post participation constraints would have been beyond the scope of the present

study.22 This is on our research agenda.
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A Proof of condition �� � 2�L
In this proof, we denote ICi

0j0(�;+)
ij ; IC

i0j0(�)
ij and ICi

0j0(+)
ij the �rst-stage incentive constraint

whereby type ij is unwilling to lie in the �rst stage, anticipating that in the second stage he
will lie, respectively, whatever the shock, only when the shock is "�"; and only when the shock
is "+ :"We further de�ne for this proof z � �i0j0 +(�i0 � �i) qi0j0 +(�j � �j0) ri0j0 : Accordingly
ICi

0j0

ij (as expressed in �) is rewritten as�ij � z: ICi
0j0(�;+)
ij ; IC

i0j0(�)
ij and ICi

0j0(+)
ij are developed

as follows:

IC
i0j0(�;+)
ij : �ij � z� 2�jri0j0 ;

IC
i0j0(�)
ij : �ij � z�

1

2

�
�i0j0 � �i0j0 � 2�j0yi0j0

�
+ (�i � �i0 � �j � �j0) ri0j0

IC
i0j0(+)
ij : �ij � z+

1

2

�
�i0j0 � �i0j0 � 2�j0yi0j0

�
+ (�i0 � �i � �j0 � �j) ri0j0 :

We see that ICi
0j0(�;+)
ij is implied by ICi

0j0

ij ; moreover, IC
i0j0(�)
ij and ICi

0j0(+)
ij are both implied

by ICi
0j0

ij if and only if:

2�j0yi0j0 + 2 (�i � �i0 � �j � �j0) ri0j0 � �i0j0 � �i0j0 � 2�j0yi0j0 � 2 (�i0 � �i � �j0 � �j) ri0j0

It is immediate to check that the range of values
h
2�j0yi0j0+ 2 (�i � �i0 � �j � �j0) ri0j0 ; 2�j0yi0j0�

2 (�i0 � �i � �j0 � �j) ri0j0 ] does exist and that values of �i0j0��i0j0 satisfying ici0j0 and ici0j0 can
be drawn from that range if and only if �i � �i0 � �j � �j0 � 0: This condition is satis�ed 8ij
and i0j0 if �� � 2�L:
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B Proofs of lemmas

B.1 Proof of Lemma 1
Incentive constraints in � are written as follows:

�LL � �HL +��qHL (IC1)
�LL � �LH ���rLH (IC2)
�LL � �HH +��qHH ���rHH (IC3)
�HL � �LL ���qLL (IC4)
�HL � �HH ���rHH (IC5)
�HL � �LH ���qLH ���rLH (IC6)
�LH � �HH +��qHH (IC7)
�LH � �LL +��rLL (IC8)
�LH � �HL +��qHL +��rHL (IC9)
�HH � �LH ���qLH (IC10)
�HH � �HL +��rHL (IC11)
�HH � �LL ���qLL +��rLL: (IC12)

From the de�nition of �0; any of the constraints (IC1), (IC3), (IC7), (IC8), (IC9) and (IC11)
is potentially binding. Replacing �HL = 0; the rents in (2a) - (2d) are obtained.

B.2 Proof of Lemma 2
Using (2a) - (2d) the objective function in �0 is rewritten as:

X
ij2�

Eij

�
1

2

�
S(y

ij
) + S(yij)

�
� (�iqij � �jrij)

�
(9)

��� [���qHL + (1� �) (��rHL +��qHH ���rHH)]
� (1� �) (1� �)��rHL
��(1� �) f1 (��rHL +��qHH)
+2 [���qHL + (1� �) (��rHL +��qHH ���rHH) + ��rLL]
+3 (��qHL +��rHL)g ;

from which the �rst-order conditions in Lemma 2 are obtained.

B.3 Proof of Lemma 3
Denote:

� (�) �
1
�
� (� � �)

�
2 +

�
1��

�
1� (1 + 2) + 2� �

(1��)�
1��

: (10)

The numerator of � (�) is strictly positive so that � (�) 6= 0: The denominator is either positive
or negative depending on the value of �: Suppose � is such that � (�) > 0: Then, from Lemma
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2, y
HH

> y
HL
if and only if:

��

��
> �� (�) ; (11)

which is true. Moreover, yHL > yHH if and only if � (�) > 1 and

��

��
< � (�) : (12)

Suppose now that � (�) < 0: Then, from Lemma 2, yHL > yHH and so equivalently:

��

��
> � (�) : (13)

Moreover, y
HH

> y
HL
if and only if �� (�) > 1 and

��

��
< �� (�) : (14)

Take ��
��

� j� (�)j : First suppose that � (�) > 0. Then, (11) is satis�ed whereas (12) is
violated. Under Lemma 2, y

HH
> y

HL
and yHL � yHH : It follows that �LL;1 < �LL;2 and so

� = 0: Since � (0) < 0; the hypothesis that � (�) > 0 leads to a contradiction. Next suppose
that � (�) < 0: Then, (13) holds whereas (14) does not. Under Lemma 2, yHL > yHH and
y
HH

� y
HL
: It implies that �LL;1 > �LL;2 and so � = 1: However, � (1) > 0; which contradicts

the hypothesis that � (�) < 0. Therefore, when ��
��
� j� (�)j or, equivalently, (5) is violated,

quantities pinned down in Lemma 2 do not solve �:

B.4 Proof of Lemma 4
Using y

HH
= y

HL
and yHL = yHH ; the rents in Lemma 1 are rewritten as:

�HL = 0; �HH = ��rHH ; �LL = ��qHH (15)
�LH = 1 (��qHH +��rHH) + 2 (��qHH +��rLL) :

The agent�s expected rent is equal to ���qHH + (1� �) f[1� (1� 1) �] rHH + �2rLLg��:
Replacing this expression, the objective function in �" is rewritten as:

X
ij2�

Eij

�
1

2

�
S(y

ij
) + S(yij)

�
� (�iqij � �jrij)

�
����qHH � (1� �) f[1� (1� 1) �] rHH + �2rLLg��;

from which the �rst-order conditions in Lemma 4 are obtained.

B.5 Proof of Lemma 5
Recall the assumption that S 000 (y) has the same sign 8y 2 [0; Y ] : Suppose that S 000 (y) < 0;

8y 2 [0; Y ] : Then, S 00(y) � S 00 (0) implying that S 0(y) = S 0 (0)+
R y
0
S 00 (x) dx � S 0 (0)+yS 00 (0) :

The assumption that S 00 (0) is �nite and, at the same time, Y !1 contradicts the assumption
that S 0(y) > 0 when y = Y: Thus, it is necessary that either y is �nite (implicitly, Y is �nite)
or S 00 (0) = �1 or both. Since S 0 (0) is �nite, the hypothesis that S 00 (0) = �1 contradicts
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as well the assumption that S 0 (y) > 0: Hence, it is necessary that Y < 1 together with
S 00 (0) > �1.

B.6 Proof of Lemma 6
As f (a) = y is the inverse function of S 0 (�) ; we have:

S 00 (y) =
1

f 0 (a)
: (16)

Using

f (a2)� f (a1) = �
Z a1

a2

f 0 (z) dz; 8a1; a2;

we can write:

(f (a4)� f (a3))�(f (a2)� f (a1)) = �
Z a3

a4

f 0 (v) dv�
�
�
Z a1

a2

f 0 (z) dz

�
; 8a1; a2; a3; a4 (17)

This is non-negative if and only if:

�
Z a3

a4

f 0 (v) dv � �
Z a1

a2

f 0 (z) dz (18)

when a4 < a3 < a2 < a1; and if and only if:

�
Z a2

a4

f 0 (v) dv � �
Z a1

a3

f 0 (z) dz (19)

when a4 < a2 < a3 < a1:
Take a4 < a3 < a2 < a1 (the proof is analogous, mutatis mutandis, for a4 < a2 < a3 < a1):
(I) If S 000 (y) � 0; 8y; then S 00 (q1) � S 00 (q2) ; 8y1 � y2: Using (16), it follows that f 0 (v) �

f 0 (z), (�f 0 (v)) � (�f 0 (z)) ; 8v; z such that v < z:
If a3 � a4 � a1 � a2; then (18) holds.
If a3�a4 < a1�a2; then (18) holds if and only if 9" > 0 such that (�f 0 (v))� (�f 0 (z)) > "

for some v 2 [a4; a3] and z 2 [a2; a1] : Equivalently, 9� < 0 such that f 00 (a) > � at least for
some a 2 [a4; a1] : Equivalently, S 000 (y) > � for some � > 0 and y 2 [f (a1) ; f (a4)] : As S 0 (0)
and S 0(Y ) are �xed, a raise (resp., a decrease) in S 000(q) for some y 2 (0; Y ) involves a raise
(resp., a decrease) in S 000 (y) ; 8y 2 (0; Y ) ; and in particular in S 000 (by) � �: Hence, the condition
S 000 (y) > � can be rewritten as � > "1 for some "1 > 0:
(II) If S 000 (�) < 0; 8y; then �f 0 (v) < �f 0 (z) ; 8v; z such that v < z:
If a3 � a4 < a1 � a2; then (18) is violated.
If a3 � a4 � a1 � a2; then (18) holds if and only if 9� > 0 such that f 00 (a) < � at least for

some a 2 [a4; a1] : Equivalently, S 000 (y) > � for some � < 0 and y 2 [f (a1) ; f (a4)] : As in case
(a); this is equivalent to � > "2 for some "2 < 0:
From (I) and (II) we see that, if a3�a4 < a1�a2; then a necessary and su¢ cient condition

for (18) to hold is that � > "1 for some "1 > 0; if a3 � a4 � a1 � a2; then a necessary and
su¢ cient condition for (18) to hold is that � > "2 for some "2 < 0:
It remains to show that (f (a4)� f (a3)) � (f (a2)� f (a1)) increases with �: An increase

in � re�ects a higher di¤erence (�f 0 (v))� (�f 0 (z)) ; 8v; z such that v < z: Then, as a4 < a3;
a2 < a1 and a3 < a1 by de�nition, for any given values of a1; a2; a3; a4 satisfying these
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conditions, the right-hand side of (17) increases with �:

B.7 Proof of Lemma 7
In this proof we denote � � �2 + 3 �

(1��)�
1�� : Using (30), together with yHH > yHL and

yHL > yHH in Lemma 6 (as from the proof of Lemma 10), we see that if � > 0; then 9"2 < 0
such that qHH < qHL if and only if � < "2; if � < 0; then 9"1 > 0 such that qHH < qHL if and
only if � < "1:
Take � > 0 and � < "2 or, alternatively, � < 0 and � < "1 so that, by Lemma 6, we have

qHH < qHL: Suppose that � < 1: Recall from Lemma 1 that � < 1 if and only if:

��(rHH � rHL) � ��(qHH � qHL):

Further recall from the proof of Lemma 10 that rHH > rHL: Thus, the above inequality holds
only if qHH > qHL; which contradicts the hypothesis that � < 1:
First check whether � > 0 for � < "2 and � = 1:With � = 1; � > 0 if and only if 2+3 > 0.

Hence, 9"2 = "H < 0 such that if � < "H ; then � = 1 and qHH < qHL: Next check whether
� < 0 for � < "1 and � = 1: With � = 1; � < 0 if and only if 2 + 3 < 0; which is impossible.
Hence, @"1 > 0 such that, if � 2 ("H ; "1) ; then qHH < qHL: Consequently, qHH > qHL for any
� > "H :
Take � > "HH so that qHH > qHL: From Lemma 6 it follows that, as � increases, qHH � qHL

becomes progressively larger than rHH � rHL: Hence, 9�1 > "H such that (29) is violated and
so � = 0: Moreover, because qHH > qHL; it is 3 = 0: Replacing into �; we �nd that � < 0: It
is impossible to have � < 0 and qHH > qHL for � < "1 where "1 > 0 (Lemma 6). Hence, �1 > 0:

B.8 Proof of Lemma 8

B.8.1 Proof of (i)

From the proof of Lemma 7, � < "H ) � = 1 and � � �2 + 3 �
(1��)�
1�� = 2 + 3 > 0:

From Lemma 1 3 > 0 if and only if qHL � qHH and rLL � rHL: From the proof of Lemma

7 � < "HH ) qHL > qHH : From Lemma 2 S 0 (yLH) � S 0(yLL) =
�
1 + 2

1��
�

�
�� > 0 so

that yLL > yLH : If yLH � yHL, then yLL > yHL. The assumption that the solution to �
0 is

the solution to � as well implies that yLH � yHL (see the proof of Lemma 10 below). Hence
yLL > yHL. From Lemma 2, for � = 1 we �nd:

S 0(y
HL
)� S 0(y

LL
) =

�
1 +

�

1� �

�
1 + (2 + 3)

1� �
�

��
�� +

(1� 2) (1� �)
� (1� �) ��;

from which y
LL
> y

HL
: Then

(S 0(y
HL
)� S 0(y

LL
))� (S 0 (yHL)� S 0 (yLL)) = 2

(1� 2) (1� �)
� (1� �) ��: (20)

As 2 � 1; the right-hand side of (20) is non-negative. Using this in Lemma 6, together with
the inequalities y

LL
> y

HL
and yLL > yHL; we deduce that rHL > rLL if and only if � < "2 for

some "2 = "LL � 0:
Overall, if � < min f"LL; "Hg then both qHL > qHH and rHL > rLL, so that 3 = 1:
(I) Suppose 9� such that qHH > qHL and rLL < rHL; involving that "H < "LL and � 2
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("H ; "LL) : Then:
��(qHH � qHL) > ��(rLL � rHL): (21)

We supposed that � < "LL; where "LL < �1; and we know that � > 0 for � < �1: From
Lemma 1 and from (21) it follows that 1 = 1 and so 2 = 0 and � = �

(1��)�
1�� < 0: This is in

contradiction with the condition qHH > qHL: Hence, @� such that qHH > qHL and rLL < rHL:
We have "H � "LL.
(II) Suppose that 9� < �1 such that qHH < qHL and rLL > rHL; involving that "H > "LL

and � 2 ("LL; "H) : Then:
��(rLL � rHL) > ��(qHH � qHL): (22)

Knowing that � = 1 for � < "H ; from Lemma 1 and from (22) it follows that 2 = 1: However,
using (20) in Lemma 6, we see that 2 = 1 ) "LL = 0: Since "H < 0; the interval ("LL; "H)
does not exist. Therefore, "H � "LL:
From (I) and (II) it follows that "LL = "H :

B.8.2 Proof of (ii)

Take � 2 ("H ; �1) so that 3 = 0 and � > 0:
Suppose that 1 = 1: Then, as previously shown, we have � = �

(1��)�
1�� < 0; involving that

qHH < qHL: This contradicts the result that qHH > qHL for � 2 ("H ; �1) : Hence, we have 1 < 1
and so 2 > 0:
Suppose that 2 = 1: Then, � = � �

(1��)�
1�� : We see that � � 1: Speci�cally, � = 1 if and

only if � = 1: Since for � = "H we have � = 1 and 3 = 1 so that � = 1; when 2 = 1 9� > 0
such that qHH > qHL: Moreover, for 2 to be equal to 1; (22) must hold. Replacing 2 = 1 into
(20) and applying Lemma 6, we see that rLL � rHL > 0 if and only if � > 0: Hence, (22) does
hold and so 2 = 1 only if � > 0: Therefore, there exists at most one value "L > 0 such that,
if � 2 ("H ; "L) ; then 1 > 0 and 2 > 0; if � 2 ("L; �1) ; then 2 = 1: If @"L in ("H ; �1) ; then
1 > 0 and 2 > 0 8� 2 ("H ; �1) :
Take now � � �1: From Lemma 7 we know that � = 0; hence:

��(qHH � qHL) > ��(rHH � rHL):

Suppose that 1 = 1: As above, we have � < 0; which contradicts the result that qHH > qHL
8� > "H : Hence, 1 < 1 and so 2 > 0:
Suppose that 2 = 1: From Lemma 1 this is the case if and only if rLL > rHH : From Lemma

2:

S 0(y
HH
)� S 0(y

LL
) = �� ��� + �

1� �

�
��

1� � �
�
2 +

�

1� �

�
��

�
� 2

1� �
�

�� (23)

S 0(yHH)� S 0(yLL) = �� +�� +
�

1� �

�
��

1� � +
�
2 +

�

1� �

�
��

�
+ 2

1� �
�

��:(24)

Since S 0(yHH) > S
0(yLL) 81; 2; � and since S 00 (�) < 0; we have yLL > yHH : Then, rLL > rHH

only if y
LL
> y

HH
: This is equivalent to:

��

��
> 1 +

2
1��
�
� 1 �

1��

1 + �
1��

h
1 +

�
1��

�
1 + 2

1��
�

�i (25)
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For 2 = 1 this is rewritten as:

��

��
> 1 +

1

�
1��

�
1 + �

(1��)(1��)

� > 1; (26)

which is not necessarily satis�ed. If (7) is violated, then y
LL
� y

HH
and so 2 < 1 8�: If (7) is

satis�ed, then Lemma 6 applies and 9"L such that rLL > rHH if and only if � > "L:
We are left with showing that "L > 0: For 2 = 1 the right-hand side of (20) vanishes.

Applying Lemma 6, rLL > rHL if and only if � > 0: First take � 2 ("H ; �1) so that � > 0: Then,
2 = 1 if and only if (22) is satis�ed. Since qHH > qHL 8� > "H ; (22) can be satis�ed only
if � > 0: Hence, "L > 0; provided that "L exists. Next take � � �1 and "L 2 (�1;1) : Then
"L > 0:

B.9 Proof of Lemma 9
As y

HH
= y

HL
and yHH = yHL; the solution to �

00 is found with 3 = 0 and � = 0: From
(15) in the proof of Lemma 4, 1 > 0, rHH � rLL and 1 = 1, rHH > rLL:
Resting on Lemma 4, we can compute:

S 0(y
HH
)� S 0(y

LL
) =

1� (1� �)�
(1� �) (1� �)�� +

(1� 2) �
1� � ��

S 0 (yHH)� S 0 (yLL) =
1� (1� �)�
(1� �) (1� �)�� �

(1� 2) �
1� � ��:

These are both strictly positive, hence y
LL
> y

HH
and yLL > yHH : Computing:

S 0(y
HH
)� S 0(y

LL
)� (S 0 (yHH)� S 0 (yLL)) = 2

(1� 2) �
1� � ��

and applying Lemma 6, rHH > rLL if and only if � � " (2) for some " (2) depending on
2: We see that " (0) < 0 = " (1) : Denoting " (0) = b"H ; we conclude that 2 = 0 if � � b"H ;
0 < 2 < 1 if � 2 (b"H ; 0) ; 2 = 1 if � � 0:
B.10 Proof of Lemma 10
Suppose that (IC1) and (IC11) are both binding in �0 and in �00: Then, (IC2) is rewritten

as �LH � �HL � ��rLH + ��qHL: It holds jointly with (IC9) only if rLH � rHL: (IC10) is
rewritten as �LH � �HL � ��rHL +��qLH : It holds jointly with (IC9) only if qLH � qHL:
From Lemma 2:

S 0(y
HL
)� S 0(y

LH
) = �� +�� (27)

+
�

1� �

��
� + (�2 + 3)

1� �
�

�
�� +

�
1� � + (1� �2�)

1� �
��

�
��

�
;

S 0(yHL)� S 0(yLH) = �� ��� (28)

+
�

1� �

��
� + (�2 + 3)

1� �
�

�
�� �

�
1� � + (1� �2�)

1� �
��

�
��

�
:
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From (27) and (28), we see that S 0(y
HL
)� S 0(y

LH
) > S 0(yHL)� S 0(yLH): From Lemma 2, we

also have y
LH
> y

HL
: It follows from Lemma 6 that if yLH > yHL; then rLH � rHL if and only

if � � "2 for some "2 = "LH < 0: Similarly, if yLH < yHL; then it is qLH � qHL if and only if
� � "LH for some "2 = "LH < 0:
It remains to show that (IC1) and (IC11) are both binding in �0 and in �00 when � < "LH

so that the two conditions rLH � rHL and qLH � qHL are both necessary in �0 and in �00: (IC1)
is binding in �0 if and only if (IC3) is implied by (IC1). Equivalently:

��(rHH � rHL) � ��(qHH � qHL): (29)

From Lemma 3, and provided that (5) holds, we have y
HH

> y
HL

together with yHL > yHH
so that rHH > rHL: Being based on Lemma 2, we compute:

(S 0(y
HL
)� S 0(y

HH
))� (S 0 (yHH)� S 0 (yHL)) = 2

�
�2 + 3 �

(1� �)�
1� �

�
�

(1� �)���: (30)

As from the proof of Lemma 7 below, the right-hand side of (30) is strictly positive. Using
this in Lemma 6, together with y

HH
> y

HL
and yHL > yHH ; we see that qHH > qHL if and

only if � > "2 for some "2 = "H < 0: Since qLH > qHH ; from the de�nition of "LH and "H it
follows that "H > "LH : Therefore, qHH < qHL for � < "LH : Together with rHH > rHL; this
involves that (29) is satis�ed. Hence, (IC1) is binding in �0: Furthermore, (IC1) is binding in
�00 by de�nition of the programme. (IC11) is binding in both �0 and �00 by de�nition of the
two programmes.

B.11 Proof of Lemma 11
From Lemma 2, at the solution to �0 :

S 0(yLL)� S 0(yLL) = 2

�
�L � 2

1� �
�

��

�
S 0(yHH)� S 0(yHH) = 2

�
�H + (1� �)

�
2 +

�

1� �

�
�

1� ���
�

S 0(yHL)� S 0(yHL) = 2

�
�L �

�

1� �

�
1� � + (1� �2�)

1� �
��

�
��

�
We see that S 0(yHH) > S

0(y
HH
): To have S 0(yLL) > S

0(y
LL
) 82; it su¢ ces that �L > 1��

�
��:

To have S 0(yHL) > S 0(y
HL
) 8� and 2; it su¢ ces that �L > 1

1��

�
� + 1��

�

�
��: Hence, the

three conditions hold jointly if:

�L >
1

1� �

�
� +

1� �
�

�
�� , �H

�L
<

1

1� � (1� �) :

From Lemma 9, at the solution to �00 :

S 0(yHH)� S 0(yHH) = 2
�
�H �

1� 2�
1� � ��

�
;

so that S 0(yHH) > S
0(y

HH
) , �H >

1�2�
1�� ��: This holds 82 if

�H
�L
< 1

�
; which is implied by

�H
�L
< 1

1��(1��) :
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C Proof of Proposition 1

C.1 Ranges of values of the ratio ��
��

Recall from the proof of Lemma 3 that (5) is rewritten as ��
��
< j�j where � is de�ned by

(10).
As long as � � "H so that � = 1 and 3 = 1 (proof of Lemma 8), we have: � = 1

�
� � > 1:

When � 2 ("H ;min f"L; �1g) so that 1 + 2 = 1 and � > 0 (proof of Lemma 8), we have:

� =

1
�
� (� � �)

�
2 +

�
1��

�
2� �

(1��)�
1��

:

There are many combinations of values of �; 2; �; � such that � > 1. In particular, if � = 1;
then � > 1 if and only if 2 � 1���

�[1+(1��)] ; the right-hand side of this inequality being positive. If

2 = 1; then � > 1 if and only if � < � <
1�(1�2�)�

2�
; which is satis�ed for various combinations

of values of � and �:
When � > �1 so that � = 0 (proof of Lemma 8), we further have:

j�j = �+
�
2 +

1

��

�
(1� �) > 1:

Overall, 8�; 9�; � such that j�j > 1: Hence, it is possible to identify an interval (1; j�j) and
an interval [j�j ;1) within which the ratio ��

��
takes values 8�:

C.2 Incentive constraints in �

C.2.1 Incentive constraints omitted in �0

The incentive constraints included in � but omitted in �0 are the upward constraints (IC2),
(IC4), (IC5), (IC6), (IC10), (IC12).
Check (IC2). Take � � "H : From Lemma 8, � � "H ) 3 = 1: From Lemma 1, 3 = 1

implies that (IC9) is binding. (IC2) is rewritten as:

�LL � �HL +��qHL ��� (rLH � rHL) :

This is implied by (IC1) if rLH � rHL: From Lemma 10 this is the case if � � "LH ; which is
true by assumption. Take � > "H : From Lemma 8, � > "H ) 2 > 0: From Lemma 1, 2 > 0
implies that (IC8) is binding. If � > 0; then (IC1) is binding as well so that (IC8) is rewritten
as:

�LH = �HL +��qHL +��rLL;

and (IC2) rewritten as:

�LL � �HL +��qHL ��� (rLH � rLL) : (31)

From Lemma 2:

S 0 (yLH)� S 0(yLL) = S 0(yLL)� S
0(y

LH
) =

�
1 + 2

1� �
�

�
�� (32)
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so that yLL > yLH and yLH > yLL: Hence rLH > rLL; involving that (IC1) implies (31).
Check (IC4). Take � � �1: From Lemma 7, � � �1 ) � > 0. From Lemma 1, � > 0 implies

that (IC1) is binding. (IC4) is rewritten as qLL � qHL: From Lemma 2:

S 0(y
HL
)� S 0(y

LL
) =

�

1� �

��
� +

1� �
�

+
(�2 + 3)�

1� �

�
��

+

�
1� � + [1� 2 (1� (1� �) �)]

1� �
��

�
��

�
S 0(yLH)� S 0(yLL) =

�
1 + 2

1� �
�

�
��:

Using S 00 (�) < 0 and S 0(y
HL
) > S 0(y

LL
); we deduce that y

LL
> y

HL
: Similarly, yLL > yLH : As

� � "LH (by assumption) and � � "LH ) yLH > yHL (Lemma 10), it follows that yLL > yHL:
Therefore, qLL > qHL; involving that (IC4) is satis�ed.
Check (IC5). Knowing that (IC11) is binding in �0; (IC5) is rewritten as rHH � rHL: Since

y
HH

> y
HL

and yHL > yHH in �
0; when the solution to �0 solves � (Lemma 3), rHH > rHL:

Hence, (IC5) is satis�ed.
Check (IC6). If � � �1 , � > 0 (Lemma 3), then (IC1) is binding. (IC6) is rewritten as:

�LL � �LH ���rLH ��� (qLH � qHL) : (33)

Since qLH � qHL when � > "LH (Lemma 10) and since � > "LH by assumption, (33) is implied
by (31).
Check (IC10). Knowing that (IC11) is binding in �0; (IC10) is rewritten as:

�HL � �LH ���qLH ���rHL: (34)

First take � � "H ) 3 = 1 (Lemma 8). It follows that (IC9) is binding (Lemma 1). (34) is
rewritten as qLH � qHL: This is satis�ed if � � "LH (Lemma 10), which is true by assumption.
Next take � > "H : As long as � < 1; (IC3) is binding (Lemma 1). (IC2) is rewritten as:

�HH � �LH ���qHH ��� (rLH � rHH) :

This implies (IC10) if and only if:

�� (qLH � qHH) � �� (rLH � rHH) : (35)

From Lemma 2:

S 0(yHH)�S 0(yLH) = ��+
�

1� �

��
1 + (1� �)

�
2 +

�

1� �

��
�� + (1� �)

�
2 +

�

1� �

�
��

�
;

from which yLH > yHH : Resting on the de�nition of qij and rij; the following equivalence holds:

qij � qi0j0 � rij � ri0j0 , yij > yi0j0 ; 8ij; i0j0: (36)

Using (36) for types LH and HH; together with �� > �� (by assumption), (35) is satis�ed,
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hence so is (IC10). Now take � = 1 so that (IC1) is binding. (IC8) is rewritten as:

�LH � �HL +��qHL +��rLL:

This is binding because 2 > 0 when � > "H (Lemma 8). Thus, (IC10) becomes:

�HH � �HL +�� (qHL � qLH) + ��rLL:

(IC11) being binding, (IC10) is further rewritten as:

�� (qLH � qHL) � �� (rLL � rHL) : (37)

If 2 < 1; then �� (qHH � qHL) = �� (rLL � rHL) (Lemma 1): From Lemma 2:

S 0(y
HH
)�S 0(y

LH
) = ��+

�

1� �

��
1 + (1� �)

�
2 +

�

1� �

��
�� � (1� �)

�
2 +

�

1� �

�
��

�
;

from which y
LH

> y
HH
: Together with yLH > yHH (as previously shown), it involves that

qLH > qHH : Hence:

�� (qLH � qHL) > �� (qHH � qHL) = �� (rLL � rHL) ;

involving that (IC10) is satis�ed. If 2 = 1; then (IC8) is binding. (IC10) is rewritten as:

�HH � �LL +��rLL ���qLH :

This is implied by (IC12) if qLH � qLL: From (32) we have yLL > yLH ; yLH > y
LL
and

(S 0(y
LL
) � S 0(y

LH
)) � (S 0 (yLH) � S 0(yLL)) = 0: Applying Lemma 6, qLH � qLL if and only if

� � 0: From the proof of Lemma 8, 2 = 1 only if � > 0: Hence, (IC10) is necessarily satis�ed
for 2 = 1:
Check (IC12). As (IC11) is binding, (IC12) is rewritten as:

�HL � �LL ���qLL ��� (rHL � rLL) :

This is implied by (IC4) if rHL � rLL. By Lemma 8, this inequality holds when � � "H : Hence,
(IC12) is satis�ed for � � "H :
Taking now � > "H ; when � > 0 (IC1) is binding (Lemma 1). (IC12) is rewritten as:

�HH � �HL +�� (qHL � qLL) + ��rLL:

As (IC11) is binding, this further becomes:

�� (qLL � qHL) � �� (rLL � rHL) : (38)

Recall that � > "H ) 2 > 0 and 3 = 0 (Lemma 8). Further recall from the proof of Lemma
7 that yLL > yHL: Using (36) for types LL and HL; together with �� > ��; we see that (38)
is satis�ed.
Next take � = 0 so that (IC3) is binding. (IC12) is rewritten as:

�� (qLL � qHH) � �� (rLL � rHH) : (39)
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From the proof of Lemma 8, yLL > yHH : Using (36) for types LL and HL; together with
�� > ��; we see that (39) is satis�ed.

C.2.2 Incentive constraints omitted in �00

These constraints are the same as in �0:
Check (IC2). First take � � b"H so that 1 = 1 (Lemma 9). (IC7) is binding (Lemma 1).

(IC2) is rewritten as:
�LL � �HH +��qHH ���rLH : (40)

Since rLH � rHH when � > b"LH (Lemma 10) and since � > b"LH by assumption, (40) is implied
by (IC3). Next take � > b"H so that 2 > 0 (Lemma 9). (IC8) is binding (Lemma 1). (IC2) is
rewritten as rLH � rLL: Since yLL > yLH and yLH > yLL at the solution to �

0 (as previously
proved) and since in �00 production levels of types LL and LH are determined by the same
conditions as in �0 (Lemma 9), it is rLH > rLL: Hence, (IC2) holds.
Check (IC4). (IC1) being binding in �00; (IC4) is rewritten as qLL � qHL. From the proof of

Lemma 9, y
LL
> y

HH
and yLL > yHH : By de�nition of �

00; qHH = qHL: Hence, qLL > qHH = qHL
and so (IC4) is satis�ed.
Check (IC5). As (IC11) is binding in �00; (IC5) is rewritten as rHH � rHL: By de�nition of

�00; rHH = rHL so that (IC5) is satis�ed.
Check (IC6). As (IC1) is binding, (IC6) is rewritten as (33). Since qLH � qHL when � > b"LH

(Lemma 10) and since � > b"LH by assumption, (33) is implied by (31).
Check (IC10). As (IC11) is binding in �00; (IC10) is rewritten as:

�HL � �LH ���qLH ���rHL:

Take � � b"H so that 3 = 1 (Lemma 8). (IC9) is binding (Lemma 1). (34) is rewritten as
qLH � qHL: This is satis�ed if � � b"LH (Lemma 10), which is true by assumption. Now take
� > b"H : (IC3) being binding at the solution to �00; (IC2) is rewritten as:

�HH � �LH ���qHH ��� (rLH � rHH) :

This implies (IC10) if and only if:

�� (qLH � qHH) � �� (rLH � rHH) : (41)

From Lemma 9:

S 0(yHH)� S 0(yLH) =
�
1 +

�

(1� �) (1� �)

�
�� � 1� 2�

1� � ��

This is non-negative if and only if:

��

��
� (1� 2�) (1� �)
� + (1� �) (1� �) ;

which is true as (1�2�)(1��)
(1��)(1��)+� < 1 and

��
��
> 1:Hence, yLH > yHH :Using this in (36), qLH�qHH >

rLH � rHH : Thus, (41) is satis�ed and so is (IC10) as well.
Check (IC12). (IC1) is binding, hence (IC12) is rewritten as:

�HH � �HL +�� (qHL � qLL) + ��rLL:
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As also (IC11) is binding, this is further rewritten as:

�� (qLL � qHL) � �� (rLL � rHL) ;

which is in turn equivalent to:

�� (qLL � qHH) � �� (rLL � rHH) :

Recall from the proof of Lemma 7 that yLL > yHH : Using this in (36), qLL� qHH > rLL� rHH :
Together with �� > ��; it involves that (IC12) is satis�ed.

D On the development of the example

The surplus function is S(q) = kq � q1+e

1+e
; hence S 0(q) = k � qe and quantities in Lemma 2

are characterized as follows:

y
LH

= [a� (�L � �H)]
1
e

yLH = [a� (�L + �H)]
1
e

y
LL

=

�
k �

�
�L � �L + 2

1� �
�

��

�� 1
e

yLL =

�
k �

�
�L + �L � 2

1� �
�

��

�� 1
e

y
HH

=

�
k �

�
�H � �H + 1

�

1� ���
�� 1

e

yHH =

�
k �

�
�H + �H + 1

�

1� ���
�� 1

e

y
HL

=

�
k �

�
�H � �L + �

�+ 2 (1� �)
(1� �)� �� + (1� �) 1� (1� 1) �

(1� �)� ��

�� 1
e

yHL =

�
k �

�
�H + �L + �

�+ 2 (1� �)
(1� �)� �� � (1� �) 1� (1� 1) �

(1� �)� ��

�� 1
e

:

In Table 2 we report the values that the quantities above take for e = 1 and e = 0:5; 1 and
2 being such that �LH;1 = �LH;2 , ��(qHH � qHL) = ��(rLL � rHL) and 1 + 2 = 1 :

e y
HL

yHL y
HH

yHH y
LL

yLL y
LH

yLH

1 11:45 7:35 12:95 6:35 11:45 8:12 14:3 7:7

0:5 133:05 56:3 166:25 39:61 195 65 205 59:29

Table 2: Optimal quantities in the example
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