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Abstract

Many countries have adopted energy policies that promote biofuels as a substitute for
gasoline in transportation. For instance, more than 40% of U.S. grain is now used for
energy and this share is expected to rise under the current Renewable Fuels Mandate.
This paper examines the distributional effects of this energy mandate on India using
micro-level survey data. First, we use a model with endogenous land use to estimate
the effect of the biofuel policy on the world price of selected food commodities - rice,
wheat, sugar and meat and dairy, which together provide almost 70% of Indian food
calories. Their world prices are predicted to increase between 5% and 11%. Uncertainty
in model parameters is incorporated using Monte Carlo techniques that generate stan-
dard errors on these price predictions. The effect of these price increases on household
welfare is then estimated using data on consumption and wage incomes. We estimate
pass-through elasticities from time-series data then compute the negative consumption
effects and positive wage impacts under perfect and imperfect pass-through from world
to domestic prices. Under perfect pass-through, the mandate leads to a reduction in
rural poverty by about 39 million people, and an increase in the number of urban poor
by 4 million people. Under imperfect price pass-through, both rural and urban poverty
increase by a total of 8 million people. Our study suggests that the US biofuel mandate
may lead to modest increase in food prices, but have sizable global welfare impacts,
which may differ across rural and urban households.
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1 Introduction

The United States has been by far the most aggressive nation in encouraging the

use of biofuels in the transportation sector. About 10% of U.S. gasoline now comes from

ethanol produced from corn, making it the largest consumer of biofuel in the world.

This share is expected to rise several-fold with the advent of second generation biofuels

under the Renewable Fuels Standard (US Congress, 2007).1 This policy is controversial

because it uses scarce land resources that displace food for energy production, leading to

an increase in food prices (Rosenthal, 2011). Several studies have attributed past food

price shocks in US and world markets to the sharp increase in biofuel production.2

Given that the US is a large consumer of transport fuels and a major producer of

agricultural commodities, the biofuel mandate may have a significant impact on welfare

in other nations, especially if food prices rise because of diversion of crops to energy.

The effect may be negative through consumption impacts, and positive if wages and

income in the agricultural sector of other nations increase. We are not aware of any

systematic studies of the global welfare impacts of biofuels policy, especially using micro-

data at the household level. In general, there are almost no studies of US energy policy

on other nations, using micro-level data that simulates the policy impact on individual

households in a sample that is statistically representative at the national level.3 A recent

study (Bento et al., 2009) focuses on the impact of increased gasoline taxes on gasoline

consumption and miles traveled in the U.S. as well as the associated distributional effects

across households that differ by income, race and other characteristics.

The goal of this paper is to estimate the effect of the U.S. biofuel mandate on

household welfare and poverty in India. India is an important country to study because

of its high incidence of poverty. A third of the population is below the international

poverty line of $1.25 a day, which amounts to over 400 million people - about one-third

of the world’s poor (Chen and Ravallion, 2010). Nearly 70% of Indians live on less than

$2 a day (World Bank, 2014b). According to the multi-dimensional poverty index which

accounts for health, education and living standards, eight Indian states have more poor

people than the 26 poorest African states combined (UNDP, 2010a).4

There are several methodological challenges in studying the effect of energy policy

on poverty in the global economy. We focus on the effect of the US biofuel mandate

1Brazil, the European Union, China and other countries have similar policies that divert corn, sugar
cane and other crops from food to energy.

2See for example, Mitchell (2008), Rosegrant et al. (2008) and Hausman et al. (2012). They report
significant price increases for different food commodities, of the order of 20-70%.

3See Bourguignon et al. (2008) for a careful discussion of top-down models that use macroeconomic
policies to study micro-level impacts. Leading economists from developing nations such as the Indian
Central Bank Governor, Raghuram Rajan, have pointed to the lack of economic studies that analyse the
effect of US domestic policy on other nations, especially in the area of monetary policy.

4Most poor people live in villages which are home to 75% of the nation’s population. A fifth of the
population suffers from malnutrition (FAO, 2010).
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on specific crops that are critical to the Indian diet, while aggregating the ones less

important.5 First, we calibrate a partial equilibrium model to trace the effect of the

mandate on the world prices of these crops. This calibrated model captures critical

dynamic effects such as allowing for new land to be converted to farming when crop prices

go up. The goal is to predict price changes that are inclusive of adjustment processes

in the world economy. We explicitly model uncertainty in the major parameters of the

calibration model such as crop yields, production costs and food and fuel price elasticities

through Monte Carlo simulations that generate standard errors on the price estimates.

The second part of our paper examines how these predicted commodity price shocks

will affect welfare among households in India. We use detailed Indian household data to

estimate the effect of the food price shocks on households through the cost of consumption,

as well as the positive effects on household wage incomes. The uncertainty in the Monte

Carlo analysis is incorporated in this second stage analysis to generate mean and standard

errors of the welfare effects for each household. We allow for household heterogeneity in

terms of their expenditure shares, factor endowments, income, geographical location and

household structure, and identify the groups that are most impacted. Based on the welfare

estimations, the net poverty effect is obtained by estimating the change in the poverty rate

ex-post of the energy policy-induced price shock. We consider both perfect and imperfect

price transmission from world to domestic Indian markets, by estimating pass-through

elasticities for the selected commodities using available price series data. These pass-

through coefficients aim to capture the role of government intervention in agricultural

markets, especially relevant for India which has a long tradition of government regulation

in the agricultural sector.

We find significant poverty impacts, even with modest world price increases (5-11%)

for most food commodities. All households experience a welfare loss through an increase

in the the cost of consumption, and this effect is regressive - poorer households are

impacted the most. However, households experience a welfare gain through an increase

in wage incomes, which is progressive, with the highest gains accruing to the poorest

households. The magnitude of the average wage effect is large for poor rural households

but small for urban and for rich rural households. As a result, the net welfare effect

that accounts for both consumption and wage effects shows a progressive distributional

impact for rural populations and a regressive one for urban populations.

These impacts can then be used to estimate the number of poor individuals before

and after the price change. The results suggest that the U.S. biofuel mandate leads to a

reduction in poverty in rural areas by 4.8% points, and an increase in poverty in urban

areas by a little more than 1.0% point. Under imperfect price pass-through of world

prices, there is an increase in poverty both in rural and urban households. Using 2011

5We study rice, wheat, sugar and meat and dairy, which together supply about 70% of the calories
for the average Indian household.
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population figures, these results indicate that the US biofuel mandate leads to a 36 million

reduction in the number of poor individuals under perfect price pass-though, and an 8

million increase under imperfect price pass-through. Under perfect pass-through, rural

poverty declines while urban poverty increases. There will be 39 million fewer rural poor

but about 4 million more poor in urban areas.

Poverty increases among both urban and rural households under imperfect pass-

through of prices, mainly due to the low pass-through elasticities of key food commodities

such as rice and wheat which contribute to adverse consumption impacts, especially

among lower-income households. However, under higher (perfect) pass-through of prices,

the positive wage impacts accruing to rural households is large, and this explains the

sizable reduction in poverty we find. Even considering smaller wage-price elasticities

taken from other studies, the net poverty impacts on rural households remains positive.

The main methodological contribution of our paper is in linking a partial equilibrium

model of the world food and energy markets to generate predictions of energy policy-

induced commodity price shocks, and then using micro-level household data to study the

distributional effects of this policy. This enables us to understand how the domestic policy

decisions of an economy (the U.S.) that is a major player in world food markets impacts

individuals and households in a developing country with a large share of population below

the poverty line and employed in agriculture. The surprising implication is that clean

energy policies that raise food prices may have significant positive impacts in other nations

where a large number of people work in the agricultural sector. In fact, these programs

may hurt the urban poor but may benefit the rural poor because of the positive effects

on their wages. However, if these wage impacts are muted due to policy intervention and

frictions in the economy, the negative consumption impacts may dominate among both

rural and urban households.6

In section 2, we outline the calibration model used to estimate the biofuel-induced

world commodity price shocks and derive the mean and standard error of prices using

Monte Carlo techniques. Section 3 develops the theoretical framework underlying the

distributional analysis. Section 4 describes the data and related stylized facts. Section 5

presents the estimates of the price pass-through of world to domestic prices. Section 6

shows the estimation results of welfare effects and its components, as well as their distri-

butional impacts and effect on poverty. The variation of welfare effects across different

types of households is discussed in section 7. Section 8 concludes the paper. Details of

the data used in the estimation are provided in the Appendix.

6Although we study the impact of the U.S. biofuel mandate, the methodology adopted in this paper
is fairly general and can be used to study the distributional effects of any policy that causes food price
shocks (e.g., agricultural subsidies, trade barriers) or natural phenomena (e.g, climate change-induced
droughts that affect crop yields).
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2 Estimating the World Price of Major Food Com-

modities

In this section we develop a simple, dynamic partial equilibrium model of the world

agricultural and transport fuel sector in order to trace the effect of the US biofuel man-

date on food prices. This mandate requires the use of biofuels (mainly from corn) in

transportation to increase from about 13 billion gallons currently to 21 billion by the

year 2022 (EPA, 2010), shown in Figure 1.7 First we present a simple model which re-

veals the underlying economic principles behind the calibration model described later in

the section.

A Model of Energy and Food

Consider a partial equilibrium economy in which two goods are produced, transport

energy and food crops. The quantity consumed of each good is denoted respectively by qe

and qf , where the subscripts e and f denote energy and food crops.8 Let Uj, j = {e, f},
be the utility function for each good assumed to be rising and concave. Transport energy

is produced from gasoline or biofuel, which for now are assumed to be perfect substitutes.

Food crops and biofuels are produced on land.

Land is assumed to be of uniform quality and may be allocated to energy or food

crops. Let Lj(t), j ∈ {e, f}, be the amount of land dedicated to producing energy and

food at any time t. Since we use this model to predict future food prices, we incorpo-

rate dynamics with a time subscript. The total land cultivated L(t) is then given by∑
j∈{e,f}

Lj(t) = L(t). Change in the total land area available under food or energy pro-

duction equals the new land brought under production for either use, defined by l, i.e.,

L̇(t) = l(t). Note that the variable l(t) may be negative if land is taken out of production:

here we only allow for new land to be brought under cultivation.

The total cost of bringing new land into cultivation is increasing and convex as a

function of aggregate land cultivated, but linear in the amount of new land used at any

given instant. It is given by c(L)l, where we assume that c
′
(L) > 0 and c

′′
(L) > 0. The

cost of conversion of new land increases because it is likely to be remotely located and

less accessible to markets. Thus the greater is the land area already under cultivation,

the higher the unit cost of bringing new land into farming. The conversion cost function

is the same whether new land is being used for food or energy.

7There is some uncertainty as to how this ambitious mandate will be met by industry, especially in
an era of low oil and gas prices, see CBO (2014).

8In the empirical model described later, we will distinguish food crops from food commodities. Demand
is expressed in terms of the food commodity, e.g., the rice crop is produced on land then converted to
rice commodity by applying a coefficient of transformation. In the theoretical model, this distinction is
left out for tractability.

5



Crop yield per unit of land for energy or food is denoted by kj where j ∈ {e, f}.
Then the output of energy and food crops is given by qe = keLe and qf = kfLf , respec-

tively, where we hide the time subscript.9 Total production cost is rising and convex with

output qj and is given by wj(qj).

The consumption of transport fuel is given by keLe + g where keLe and g denote

consumption of biofuels and gasoline. Let the unit cost of gasoline be cg.
10 The biofuel

mandate is in the form of a quota and can be written as keL̄e where L̄e is the minimum

land area required to meet the imposed target, giving us the constraint keLe ≥ keL̄e.

Let the social discount rate be r. Then we can write the social planner’s objective

function as maximization of the discounted surplus from energy and food by choosing

how much land to plant to food and biofuels and the quantity of gasoline to be used, as

follows:

Max{Lj(t),l(t),g(t)}

∞∫
0

e−rt{[Ue(keLe + g) + Uf (kfLf )]

−c(L)l −
∑
j

wj(kjLj)− cgg}dt (1)

subject to keLe ≥ keL̄e (2)

and L̇(t) = l. (3)

The current value Lagrangian can be written as:

L = Ue(keLe + g) + Uf (kfLf )− c(L)l −
∑
j

wj(kjLj)− cgg + λl + θke(Le − L̄e), j ∈ {f, e}

where θ is the multiplier associated with the mandate (2) and represents the implicit

subsidy required to meet it, and λ is the dynamic shadow price of land. The first order

conditions, assuming an interior solution, are given by:

kf (U
′

f − w
′

f )− c′(L)l = 0 (4)

ke(U
′

e + θ − w′e)− c′(L)l = 0 (5)

c(L) = λ (6)

U
′

e − cg = 0 (7)

and λ̇(t) = rλ+ c ′(L)l, (8)

along with associated non-negativity constraints, not shown here. Equation (4)

states that land is allocated to food production until the price of food (U
′

f ) equals the

sum of the marginal cost of production (w
′

f ) and conversion cost c′(L)l, adjusted by crop

9In the calibration model, we allow for multiple food and energy crops, as explained below.
10Production of crude oil and conversion to gasoline is explicitly modeled later in this section.
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yield. Condition (5) suggests that the price of energy (U
′

e) equals the sum of the marginal

cost of biofuel production (w
′

e) and land conversion plus the subsidy θ induced by the

mandate. The dynamic shadow price of land is equal to the unit cost of conversion from

(6). Condition (7) suggests that the price of transport fuel equals the unit cost of gasoline

production. Finally (8) relates the rate of change of the land shadow price to the discount

rate and marginal cost of land conversion.

We can now summarize the main insights from this model. Higher prices for food or

energy, for example, from a positive shock to demand will imply increased land conversion,

ceteris paribus. A higher price of gasoline will make biofuels relatively economical and

trigger an acreage shift from food to energy. Food prices will rise, and new land conversion

may occur. A larger biofuels mandate will implicitly mean a higher subsidy for biofuel

production, increased land under fuel production and lower consumption of the substitute,

gasoline.11

Calibration

In this section, we modify the simple framework outlined above to calibrate a model

that can trace the effect of the US biofuel mandate on the price of selected food com-

modities in the world market. The empirical model described here follows the same basic

optimizing principle we have discussed above, but with some extensions that try to cap-

ture key features of the world food and energy markets. These include - heterogeneity in

demand for energy and food in different geographical regions and differences in produc-

tion costs and in land endowment and quality. The goal is to arrive at realistic long-run

predictions for price increases for a set of important food commodities which can then be

used to examine welfare impacts for India.12

The Renewable Fuel Standard (RFS) sets a minimum use of first generation (ethanol

from corn) and advanced biofuels (from cellulosic materials) as shown in Figure 1. The

consumption of first generation fuel is mandated to increase from 10 billion gallons in

2010 to 15 billion in 2022 (EPA, 2010).13

The effect of this mandate is examined by considering three geographical regions -

the United States, India, and the Rest of the World (ROW) - the last region aggregates

all other nations. We consider five food commodities - rice, wheat, sugar, ”other food”

which includes all other crops than the three mentioned previously, and ”meat and dairy”

considered separately. ”Meat and dairy” is not directly produced from land but a portion

of the ”other crops” are used to feed animals which are then transformed into meat and

11For further insights on the use of land for food and energy, see Chakravorty et al. (2008).
12For a detailed description of the calibration techniques employed, see Chakravorty et al. (2014).
13Two categories of advanced biofuels are also specified in the mandate - 4 billion gallons of low-

carbon biofuels which must exhibit a 50% reduction in greenhouse gas emissions relative to gasoline
(only sugarcane ethanol from Brazil can meet this minimum requirement) and 16 billion gallons of
second generation biofuels for the year 2022. We consider both types of advanced biofuels in the model.

7



Figure 1: U.S. Biofuel Mandate

Notes: Beyond 2015, the ethanol mandate is fixed at 15 billion gallons. The rest is advanced biofuels.
Source: (EPA, 2010)

dairy products. These specific commodities are chosen because of their importance in

the Indian diet and because they use significant land area globally, and therefore may be

especially sensitive to the mandate which induces a shift of land away from food to energy

production.14 Rice and wheat are likely to be impacted the most from diversion of land

to energy production.15 The ”other food” category includes all grains other than rice and

wheat, such as starches and oil crops.16 We include meat and dairy separately because

their production is land-intensive. On average, eight kilograms of cereals produce one

kg of beef and three kgs produce one kg of pork (Chakravorty et al., 2014). The model

assumes frictionless trading across the three regions in the food commodities, crude oil

and biofuels. However, transport fuel which is provided by gasoline and biofuels, is

assumed to be consumed domestically in each region and is not traded.

Figure 2 shows a schematic of the calibration model. Land of different qualities is

used to grow food crops and biofuels. Gasoline is produced from crude oil. Gasoline and

biofuels are substitutes in transport fuel. The five food commodities and transport fuel

are characterized by independent demand functions. The time-sensitive biofuel mandate

is imposed as a consumption constraint that must be satisfied each year. The model is

run for 100 years starting from base year 2010. The discount rate is 2%. All parameters

are calibrated to match actual figures for year 2010.

14Rice, wheat and sugar together supply 60% of all calories in India.
15According to FAO (2014), rice accounts for 10% of world farmland and wheat another 14%.
16These crops are not disaggregated further because they occupy a smaller acreage and are likely to

be less important in terms of distributional effects than rice and wheat.
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Figure 2: Schematic of the Model with Food and Energy

Land of different qualities Crude Oil

Food crops Biofuels Gasoline

Food Commodities Transport fuel

Notes: Land of different qualities is used to produce biofuels or food crops, namely rice, wheat, sugar
and ”other crops.” These crops are then transformed into food commodities (rice, wheat and sugar). A
portion of ”other crops” goes into ”meat and dairy” production.

Land Use

Crop yields depend on land quality which varies significantly across geographical

regions (Eswaran et al., 2003). Yields can be three times higher on high quality land

than on low quality land. We use the widely used FAO-IIASA database (Fischer et al.,

2001) to define three different land qualities based on soil and climate characteristics.

Each quality is indexed by n (high, medium, low) with high being the most productive.17

Total land area in the model includes land cultivated in base year 2010 and fallow land

that may be brought into cultivation (See Appendix Table A.1).18 The cost of conversion

of land into farming for each land quality and region is taken from Gouel and Hertel

(2006) and Sohngen and Mendelsohn (2003):

cn = ψ1 − ψ2log

(
L̄n − Ln
L̄n

)
(9)

where L̄n is the initial area of fallow land of quality n available for cultivation in

the base year and Ln is the acreage of quality n already cultivated. Thus, L̄n − Ln is

the residual land available. The smaller this value, the larger is the cost of conversion.

The variables ψ1 and ψ2 are cost parameters taken from Gouel and Hertel (2006) and

reported in Table A.2. These parameters are the same for each land class but different

for each region. We thus have three conversion cost functions for each region - one for

each land quality. Conversion costs go to infinity as available land gets exhausted.

As shown in Figure 2, land is allocated to produce the four food crops or biofuels

17The database identifies four qualities - very suitable, suitable, moderately suitable and marginally
suitable. We have grouped these four into three, by consolidating the two intermediate classes into one,
since their yield difference is small.

18Protected forests are excluded from the model as in other studies (Golub et al., 2009). For India, we
make the plausible assumption that no new land is available for farming (Ravindranath et al., 2011).
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(first and second generation).19 We assume linear production, i.e., output is just yield

times land area. For each land quality, the FAO/IIASA database has information on the

acreage under each crop and its yield.20 The definition of land quality depends on the

level of input use such as technology and irrigation. The FAO data gives yield estimates

at various levels of inputs - high, medium and low. For each crop and region, we match

these yields to actual data from FAO (2014) for base year 2010 and choose the level of

input that matches the data. For the US, we adopt the yield for ”high input” use, and

for the other two regions, we choose the yield for ”low input use.” Crop yields by land

quality are reported in the Appendix (see Table A.1). Since the model is dynamic, we

allow for exogenous improvements in agricultural productivity specific to region and land

quality.21

The total cost of crop production in each region is a function of aggregate regional

output and assumed to be increasing and convex. The higher the production, the cost

of factors such as fertilizers and pesticides increases more than in proportion (Kooten

et al., 2004). Let j denote the crop produced on any given land, such as rice, wheat,

sugar, other food or biofuels. Then the total production cost for crop j in a given region

is defined as

wj

(∑
n

kjLjn

)
= η1

[∑
n

kjnL
j
n

]η2
(10)

where
∑
n

kjnL
j
n is the aggregate output of product j, and η1 and η2 are regional cost

parameters. The data used is shown in Appendix Table A.3.

The four crops are transformed into five final commodities (rice, wheat, sugar, other

foods, and meat/dairy) by applying a constant coefficient of transformation, detailed in

the Appendix. Biofuel supply is region-specific, with a representative fuel for each region.

This assumption is reasonable since only one type of first generation biofuel actually

dominates in each region. For example, 94% of US production in 2010 was from corn

ethanol (EIA, 2014). In India, sugarcane ethanol is the main source (Ravindranath et al.,

2011). The premier producer in the ROW region is Brazil where ethanol is also produced

from sugarcane. Table 1 shows the representative crop for each region, its yield by land

quality and production cost.22 Second generation biofuels are assumed to be available

19First generation biofuels are produced from corn in the US and sugarcane in India and ROW.
20Crop acreage for US and India is readily available from this database. For the ROW region, we

subtract the values for US and India from the total world figure. So for wheat, rice and sugar, we can
use the data directly. However, to obtain the yield per land class for the category “other crop,” we
calculate the weighted mean crop yield for grains, roots, tubers and oil crops where the weight used is
the share of each crop in total production in the region.

21This data is taken from Fischer et al. (2001). To illustrate, for rice, the annual growth rate of yield
for the highest land quality is 1.18% and 0.90% for the lowest. See Appendix Table A.1.

22Output of biofuel is computed as crop yield times the coefficient of transformation of the crop into
biofuel. Production costs include the cost of transforming crop into biofuel net the positive value of any
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in the US alone since it may be many years before they acquire significant acreage in

other regions. We only consider cellulosic ethanol since it has been identified as the most

promising second generation fuel (Chen et al., 2014). Since these crops are less demanding

in terms of land quality, we assume that their yield is uniform across different qualities.

The yield of cellulosic ethanol is assumed to be 2, 000 gallons per hectare and its unit

cost $3 per gallon (Chen et al., 2014).

Table 1: Data on First Generation Biofuels

US India ROW

Representative crop and its share in regional production

Corn Sugar Sugar

(94%) (76%) (80%)

Energy yield by land quality (gallons/ha)

High 876 1,200 1,463

Medium 681 912 1,254

Low 487 790 1,115

Unit production cost ($/gallon)

1.01 1.66 0.74

Notes: Production costs are taken from FAO (2008) and Ravindranath
et al. (2011); the numbers in parentheses show the share of first-
generation biofuels produced from the representative crop (e.g., corn).
The representative crop for ROW is sugarcane - since Brazil is the
dominant producer with 75% of ROW production.

Specification of Demand for Food and Energy

Demand for each of the five food commodities and for transport fuel are modeled

using generalized Cobb-Douglas functions. They are indexed by i ∈ {rice, wheat, sugar,

other food, meat/dairy and transport fuel}. Regional demand Di for good i is given by

Di = AiP
αi
i y

βiN (11)

where Pi is the price of good i (in dollars), αi and βi are the regional own-price and income

elasticities for good i, y and N are regional per capita income in dollars per capita and

population (in billions) and Ai is the constant demand parameter calibrated from data

that reproduces the observed demand for the base year (see Appendix Table A.4). We

impose exogenous population and GDP per capita projections for each region in order to

capture time shifts in demand for food and energy (see Appendix).

Transport energy is supplied by gasoline and biofuel, which are imperfect substi-

tutes. Because the substitution between the two fuels may depend on a host of factors

such as the future availability of flexible fuel vehicles, we adopt a CES specification as in

Ando et al. (2010) given by:

by-products.
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qe = λ

[
µgq

ρ−1
ρ

g + (1− µg)(qbf + qbs)
ρ−1
ρ

] ρ
ρ−1

(12)

where qe is the production of transport fuel in the region and µg is the share of gasoline

in transport, ρ is the elasticity of substitution, and qg, qbf and qbs are the respective de-

mands for gasoline and first and second generation biofuels. The elasticity of substitution

depends upon the technological barriers for displacing gasoline by biofuels. Elasticity es-

timates are from Hertel et al. (2010), reported in Appendix Table A.5. The parameter λ

is a constant which is calibrated to reproduce the base-year production of transport fuel

(see Table A.5).

Crude oil supply is modeled as a competitive ”bathtub” as in Nordhaus (2009) with

a supply elasticity of 0.5. We posit a rising cost of extraction which captures the fact that

with increased extraction, the marginal cost of oil rises.23 Crude oil is then transformed

into gasoline (see Appendix).

We run the model for two cases. In the BASE (baseline) model, biofuels are avail-

able but there is no mandate. In the REG (regulation) model, the biofuel mandate

described earlier is imposed.24 In this model, we impose three constraints for US biofuels

consumption. The first constraint states that the minimum level of consumption of first

generation biofuels should increase from 10 billion gallons in 2010 to 15 billion in 2022.

This target can be met either by increasing domestic production or by importing from

other regions. The two remaining constraints concern the minimum use of advanced bio-

fuels. As we explained earlier, two categories of advanced biofuels are considered. The

first one named the low-carbon biofuels must exhibit a 50% reduction in greenhouse gas

emissions relative to gasoline. Their consumption should increase from 1 billion gallons

in 2010 to 4 billion in 2022. Since only sugarcane ethanol from Brazil can meet this emis-

sions requirement, we impose a minimum level of US imports from ROW. The second

one includes the second generation of biofuels. We impose a constraint that second gen-

eration biofuels should increase from 0 in 2010 to 16 billion gallons in 2022.25 The global

social planner maximizes the discounted consumer plus producer surplus for all regions

by choosing the allocation of land to food and biofuels and the consumption of gasoline.

The mandate imposes a minimum use of biofuels for each year and causes grains to be

diverted from food to energy. This leads to increased acreage in farming in regions that

23These costs may rise due to depletion effects or the increased cost of environmental regulation of
fossil fuels.

24India has also set a target of minimum use of biofuels of 20% by 2017, however, the share of biofuels
in transport fuel is less than 5% in 2013. We do not model this policy in our study since the Indian
biofuel policy will not likely impact world food and energy markets significantly - India consumes less
than 2% of global transport fuel.

25In our model, we assume that second generation are only produced in the US. This target can be
met only through domestic production.
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have large endowments of low-cost arable land.26

Table 2 shows world prices for the year 2022 for the five food commodities with and

without the mandate.27 The effect on commodity prices is modest relative to other studies

(Roberts and Schlenker, 2013, Hausman et al., 2012) possibly because of adjustments in

land-use built into our model. Wheat prices increase the most followed by “other food”

and meat/dairy. There is a shift in acreage away from food to energy production in the

U.S. by about 21 million hectares relative to the no mandate in the year 2022. This

represents about 12% of U.S. cropland. Since most of this additional land is released

from the acreage in ”other food,” US production of food crops falls by about 7%. Wheat

prices show the largest increase because the US is a major wheat producer. Meat prices

increase mainly because of the price of feed such as soybean, a part of ”other crops.”

Sugar prices are impacted less because it is mostly produced outside the US and can be

cultivated in lower quality lands, unlike most grains.

Table 2: Food Commodity Prices (US dollars/ton) in 2022 with (REG) and
without (BASE) the Mandate

Rice Wheat Sugar Other food Meat/dairy

BASE 503 481 456 405 2,784

REG 543 556 458 458 3,114

% DIFF 7.95 15.60 0.44 13.09 11.85

Notes: %DIFF refers to the absolute difference between the BASE and REG prices.

Uncertainty in model parameters

The parameters of the model may be subject to uncertainty from random shocks

or extreme events. One way to deal with this issue is to do sensitivity analysis, but that

does not generate standard errors on our price predictions. We thus perform Monte-Carlo

simulations (Schade and Wiesenthal, 2011). First we do sensitivity analysis to determine

which parameter(s) produce price shocks of the largest magnitude in 2022, the year we

study. As in Schade and Wiesenthal (2011), we keep this process simple by applying

the same percentage change in absolute value for each parameter except for a couple of

exceptions detailed below. We shock both models (BASE and REG), and these shocks

are identical across the different regions.

26Since we have made the model tractable by aggregating countries into three regions, we are unable to
say precisely in which country the land conversion takes place. That would require a more disaggregated
framework and is of limited interest for our study.

27We choose price estimates for the year 2022 because that is the terminal year for the present mandate.
We could have chosen an earlier year, but given that the model base year is 2010, we aimed to capture
a time period that allowed for supply side adjustments to kick in. Therefore we choose the year 2022.
Since the goal of the paper is to show how energy policy-induced price shocks impact poverty, we choose
long-run price shocks. Short-run price shocks will be larger, of course.
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We consider the following single shocks to model parameters: 1) a 30% decrease

in the land conversion cost. This case may represent lax environmental regulation and

other government policies or technological change that reduces the cost of converting new

land for farming; 2) a 30% decrease in the production cost of first-generation biofuels,

again representing technological change and learning in the nascent biofuel industry; 3)

a 30% increase in the price elasticity of transport fuel (4) and in the price elasticity of

final demand for all the five food commodities. The last two runs account for possi-

ble differences in elasticity estimates in the literature because of differences in data or

methodology used.28 We consider an increase in the price elasticity because then demand

is more sensitive to a change in the commodity price; 5) A 10% decrease in mean crop

yield, which may be caused by climatic events such as water shortages or temperature

variability over time (see e.g., Ruttan (2002), Auffhammer and Schlenker (2014)). This

10% figure corresponds to the ratio of the standard deviation to mean yield for the five

crops during the period 1980-2010 (FAO, 2014), and finally, 6) an average decrease of 4%

in regional population. United Nations Population Division (UNDP, 2010b) builds three

population scenarios - low, medium and high. Our baseline model adopts the medium

case. For the sensitivity analysis, we consider the ”low” case for all the three regions. In

2022, world population is projected to be about 8 billion for the medium case and 7.7

billion for low. Given declining fertility in many countries considering the lower number

may be more reasonable.29

The results for the sensitivity analysis are shown in Table 3. In the top, we re-

peat the information from Table 2 to facilitate comparison. The panels show the price

estimates and the difference between the regulated and unregulated prices for each pa-

rameter shock. The figures in parentheses in the last row for each run is the difference

in percentage point of the price shock for that run relative to the model with initial pa-

rameter values. They tell us which parameter has the largest impact on the price shocks

from the mandate. For instance, the price of rice increases with the mandate by 7.95%

under the set of initial parameter values (see top panel on left) but with the higher food

price elasticity, it increases by 6.37% (second panel). So, the difference is 1.58% points,

as noted in the last row. We now try to pick which parameters are most sensitive, and

this involves comparison of the vector of price shocks for all five commodities seen in the

Table 3 with some subjective judgment. Rice and wheat are the most important crops,

28Paul (2011) estimates an Almost Ideal Demand System (AIDS) for different groups of food com-
modities using data from the National Sample Survey (NSS) over the period 2004-2005. His estimate
for the price elasticity for cereals is -0.60 and -1.1 for meat. Mittal (2006) obtains similar elasticities
by estimating a Quadratic Almost Ideal Demand System (QUAIDS) also using data from the NSS sur-
vey. Hertel et al. (2007) estimate an AIDADS (An Implicit Direct Additive Demand System) model
for 10 commodity categories following the procedure of Cranfield et al. (2002). In their study, the price
elasticity for cereals and meat are estimated to be -0.10 and -0.20, respectively.

29We also shock the model with a 30% decrease in the cost of second generation biofuels to account
for rapid technological progress in production and refining technology, but that did not change results
significantly, hence is not reported.
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Table 3: Food Commodity Prices (US dollars/ton) with (REG) and without
the Mandate (BASE) in 2002: Sensitivity to Parameters

Rice Wheat Sugar Other food Meat/dairy

Initial parameter values

BASE 503 481 456 405 2,784

REG 543 556 458 458 3,114

% DIFF 7.95 15.60 0.44 13.09 11.85

High price elasticity of food commodities

BASE 487 449 456 383 2,644

REG 518 508 457 425 2,905

% DIFF 6.37 13.14 0.22 10.97 9.87

(1.58) (2.36) (0.22) (2.12) (1.98)

Low crop yields

BASE 615 693 460 554 3,719

REG 674 804 463 633 4,210

%DIFF 9.59 16.02 0.65 14.26 13.20

(1.64) (0.42) (0.21) (1.17) (1.35)

Low conversion cost of land

BASE 479 435 455 372 2,581

REG 513 498 456 417 2,861

%DIFF 7.09 14.50 0.22 12.10 10.85

(0.86) (1.1) (0.22) (0.99) (1.0)

Low production cost of biofuels

BASE 506 485 456 408 2,804

REG 545 559 458 460 3,128

%DIFF 7.71 15.26 0.44 12.75 11.55

(0.24) (0.34) (0) (0.34) (0.3)

Low population

BASE 472 422 455 363 2,522

REG 507 488 456 411 2,818

% DIFF 7.42 15.64 0.22 13.22 11.74

(0.53) (0.04) (0.22) (0.13) (0.11)

High price elasticity of fuel

BASE 504 481 456 405 2,786

REG 544 557 458 458 3,116

% DIFF 7.94 15.80 0.44 13.09 11.84

(0.01) (0.20) (0) (0) (0.01)

Notes: %DIFF refers to the absolute difference in the price increase between the BASE and
REG cases. The numbers in parentheses are the absolute difference in the %DIFF figures rela-
tive to the initial parameter values shown in the top panel.

from an acreage as well as consumption standpoint, hence price changes in these two

crops matter the most.30 Using this criteria, the bottom three scenarios - low production

30The effect on sugar prices is generally low, since sugarcane can grow well on lower land qualities,
unlike other crops (see Table A.1).
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cost of biofuels, low population and high fuel price elasticity are immediately eliminated.

Out of the top three scenarios in the Table 3, we do not have data on land conversion

costs although it has a significant effect on prices. Thus we only focus on uncertainty in

the top two parameters, price elasticity of food and low crop yields.

Next we assume that the probability density function for these two short-listed

parameters is a normal distribution, as in Schade and Wiesenthal (2011). The main

source of uncertainty for crop yields comes from climate shocks or extreme events such

as droughts and hurricanes.31 The mean crop yield for each land quality and region is

assumed to be the observed yield from the base year (2010), reported in Table 4. The

standard deviation of the distribution is computed from yield data for the period 1980-

2010 obtained from FAO (2014). This data is readily available for rice, wheat and sugar

for US and India. For ROW, we net out India and US output from world production.

For the “other food” category, we calculate mean yield by dividing total production by

acreage planted for each of the three regions. Since historical data on yield by land class

is not available, we cannot compute standard deviations for each land quality. These are

taken to be uniform, as shown in Table 4. That is, we assume that extreme events affect

all land classes equally.

Estimates for the mean and standard deviation for the other parameter, own-price

elasticity of food commodities, are obtained from a range of different studies. Figures for

the US are from Hertel et al. (2007) and Regmi et al. (2001). Both studies estimate the

own-price elasticity for two groups of food commodities. The first group includes cereals,

sugar and sugar cane, roots and tuber, oils seeds, vegetables and fruits. We use this figure

as our common elasticity estimate for rice, wheat, sugar and other food. Their second

group of food commodities includes meat and dairy which we can use directly. Data

on own-price elasticities for India are from Paul (2011), Hertel et al. (2007) and Mittal

(2006). For the ROW region, we use elasticity data from Roberts and Schlenker (2013)

and Dimaranan et al. (2007) by assuming that their world averages hold for ROW. 32 We

take the mean and standard deviation for these elasticities by region and food commodity,

as shown in Table 4.

Next, we introduce the probability density functions for food price elasticities and

for crop yields in the calibrated model described previously.33 The model is iterated 5, 000

times with randomly drawn parameters from the two distributions. For each draw, we run

the BASE and REG models. We thus obtain 5, 000 values for the vector of commodity

prices. Their mean and the standard error of the mean are shown in Table 5.

31For instance, after the 2012 drought, average maize yields in the US declined by 25% from their 2011
levels.

32Roberts and Schlenker (2013) estimate world elasticities for one consolidated commodity group that
includes maize, wheat, rice and soybeans, which we can use directly for our four commodities.

33The value of the other parameters is assumed to be known with certainty.
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Table 4: Probability Density Functions for Crop Yields and Price Elasticity
of Food Commodities

Crop Yields (tons/hectare)
U.S. India ROW

Commodity Land Class Mean St. Dev Mean St. Dev Mean St. Dev
High 7.1 3.2 4.0

Rice Medium 5.1 0.63 2.8 0.22 3.0 0.18
Low 3.5 3.0 2.0

High 6.8 4.0 2.8
Wheat Medium 5.0 0.20 1.8 0.20 1.8 0.14

Low 2.9 1.5 0.8

High 86 79 70
Sugar Medium 62 4.67 60 5.75 60 2.78

Low 45 42 50

High 4.5 2.0 2.2
Other food Medium 3.5 0.50 1.5 0.30 1.8 0.30

Low 2.5 1.0 0.9

Food Price Elasticity
U.S. India ROW

Commodity Mean St. Dev Mean St. Dev Mean St. Dev
Rice -0.10 0.001 -0.50 0.020 -0.15 0.008

Wheat -0.10 0.001 -0.50 0.037 -0.15 0.008
Sugar -0.10 0.001 -0.74 0.014 -0.15 0.008

Other food -0.10 0.001 -0.50 0.020 -0.15 0.008
Meat/dairy -0.50 0.006 -1.10 0.020 -0.19 0.008

Notes: The probability density function for each parameter is assumed to follow a normal dis-
tribution. The mean and the standard deviation for the distribution of crop yield is computed
using FAO-IIASA (2002) and FAO (2014) data. The mean and standard deviation of the food
price elasticity for each commodity is obtained from various studies (see text).

3 Estimation of Distributional Impacts

In this section, we estimate the distributional impacts of the mandate using micro-

level surveys from India. We specifically focus on changes in household welfare caused

by the increase in the price of the five food commodities. In our empirical framework,

household welfare is composed of the changes in consumption behavior of the household,

and in the household wage income due to the price increase. These two components are

estimated with (REG) and without the US biofuel mandate (BASE). The welfare impact

of the mandate is then defined as the percentage gain or loss to Indian households under

the mandate relative to the no mandate policy. Following Deaton (1989), the change in

household welfare is defined as the negative of the compensation variation as a share of

initial household expenditure. That is, the amount households must be compensated in

order to have the same utility level they have absent the mandate.34

34This method has been used to investigate the impact of price changes arising from trade polices, see
e.g., Porto (2006, 2010), Nicita (2009) and Ural Marchand (2012).
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Table 5: Mean and Standard Errors for Food Commodity Prices with and
without the Mandate

Rice Wheat Sugar Other food Meat/dairy

BASE Model (without biofuel mandate)

Mean 492 476 455 394 2,839

SE (0.65) (1.30) (0.02) (1.03) (6.64)

REG Model (with biofuel mandate)

Mean 517 530 457 429 3,090

SE (0.71) (1.42) (0.03) (1.15) (7.26)

Change in commodity prices (%)

Mean 5.1 11.3 0.5 8.9 8.9

SE (0.024) (0.044) (0.002) (0.041) (0.031)

Notes: Mean and standard errors (SE) of commodity prices from 5,000 iterations are
reported for the base year 2022.

The welfare impacts through the cost of consumption involve two components. The

first order impacts are those which directly affect households through price changes with

respect to their initial consumption basket. We allow for second order impacts that

incorporate the adjustments in the household consumption basket in response to the

differential price changes across goods. After accounting for estimated changes in their

wage incomes, we arrive at a net welfare effect for each household. We use the results

of the Monte Carlo analysis in section 2 to obtain the standard errors of these welfare

effects by household, which arise from the uncertainty in crop yields and crop price

elasticity. This micro-level approach lets us differentiate between households based on

their characteristics such as expenditure patterns and factor endowments. In addition,

the uncertainty in Monte Carlo parameters allows us to obtain a distribution of the

welfare effect for each household, and for the overall poverty impact of the biofuel policy.

Consider the following net expenditure function for household h:

Bh(p, u) = Eh(p, u)− wh(p) (13)

where p is the vector of prices, Eh(p, u) is the expenditure required to reach utility level

u and wh(p) denotes the wage income of the household. A second-order Taylor series

expansion of Bh(p, u) around an initial price level p0 and utility level u0 yields

Bh(p, u) = Bh(p
0, u0) +

∑
i

(
∂eh
∂pi
− ∂wh

∂pi

)
dpi +

1

2

∑
i

∑
j

(
∂2eh
∂pi∂pj

)
dpidpj. (14)

By the envelope theorem, ∂eh/∂pi is the Hicksian demand so that hi(pi, u) = xih.

The compensated price elasticity of good i with respect to good j is then given by

εi,j = (∂2eh/∂pi∂pj)(pj/xih). The term dBh(p, u) = Bh(p, u) − Bh(p
0, u0) denotes the

compensation the household needs in order to achieve the initial utility level u0. When

this term is positive, it is a net transfer, hence a welfare loss for the household. When
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it is negative, the household is better off, thus experiencing a welfare gain. The negative

compensating variation can be written as a fraction of initial expenditure by multiplying

the right hand side of (14) by pi/pi and both sides by 1/eh to obtain

Wh = −dBh(p, u)

eh
= − 1

eh

∑
i

(xihpi − εwiwi)
dpi
pi
− 1

2eh

∑
i

∑
j

εi,jxihpi
dpi
pi

dpj
pj

(15)

where Wh is the compensating variation as a fraction of household initial expenditure

and εwi is the elasticity of wages with respect to the price of good i.

Each member of the household contributes to household income, which is also af-

fected by the price change. We can express household wage income from good i as

wih =
∑
m

wmih where m = 1, ....,M represents members of the household. Equation (15)

can then be simplified to

Wh = −

(∑
i

θihdlnpi −
1

2

∑
i

∑
j

θihεijdlnpidlnpj

)
+

(∑
m

∑
i

θmwihεwidlnpi

)
(16)

where θih = xihpi/eh is the expenditure share of good i and θmwih is the share of wage

income from production of good i in the household budget contributed by member m.

The terms on the right hand side of (16) represent the different components of

the compensating variation. The first term gives the direct consumption impact of the

price change dlnpi induced by the biofuel mandate. Households that consume goods

i = 1, ..., n will be impacted negatively due to an increase in their cost of consumption.

The magnitude of this effect is proportional to the importance of these goods in their

budget given by the budget shares θih. Survey data is used to compute this share for

each household. The second term in (16) estimates the response of households to the

price shock by allowing them to adjust their consumption basket, therefore mitigating

the effect of the first-order (direct) impact on their budgets. A positive price shock

for good i induces an increase in the consumption of substitute goods and a reduction

in the consumption of complement goods. These second order relationships between

consumption goods are given by the five by five elasticity matrix, εij.
35

The last component in (16) measures the effect of the price shock on household

income, which enters as a positive component in their welfare function. These income

changes are measured individually for each member m and then aggregated up to the

household. Individuals who are affiliated with industry i experience an increase in their

wages by the term εwidlnpi where εwi is the wage-price elasticity and dlnpi is the change

in price in industry i.36 The impact on household net expenditure is then proportional

35For each good i there are 25 second-order terms that summarize the behavioral response of the
household. The set of elasticities used is given in Appendix Table A.6.

36Here, the terms good and industry are used interchangeably. However, we distinguish between the
two in the next section. In particular, a good refers to items in the household budget, whereas an
industry refers to the individual’s primary industry affiliation.

19



to the contribution of member m to the household budget, given by weight θmwih and

computed using the NSS survey data.37

The components of household welfare represented in (16) include only the types

of income which are likely to be most affected by the price shocks, and therefore are

not exhaustive, i.e., they do not represent all possible sources of household income. The

estimation approach is also restricted to components for which data are readily available.

For example, detailed household-level income data for agricultural profits, remittances,

rents and transfers is not available and thus not included in our analysis. The welfare

and poverty impacts estimated in this section only incorporate household consumption

behavior, both in terms of direct cost and the adjustments in the consumption basket,

and direct effect on wage income, without allowing for general equilibrium adjustments

across sectors.

The Monte Carlo analysis allows us to estimate the standard errors on the welfare

and poverty effects. The uncertainty comes from the distribution of crop yields and

crop price elasticity, as presented in Table 4, and produces 5, 000 predictions for the

price effects using random iterations. In this section, the estimation of compensating

variation is done by resampling from these vectors of price changes. For each random

draw, we estimate the welfare outcomes for each household. This delivers a distribution

of consumption impacts for each household with mean Ĉh and standard error σCh , wage

impacts with mean of Êh and standard error σEh , and total compensating variation with

mean Ŵh and standard error σWh
. The total compensating variation can then be written

as

Ŵh = Ĉh + Êh. (17)

This approach obviates the need to make additional distributional assumptions

on key parameters of the model. The econometric model therefore does not introduce

additional uncertainty, but incorporates the uncertainty introduced previously in the

calibration.

4 Description of Data

The analysis relies on two nationally representative surveys from India. The Na-

tional Sample Survey Organization (NSSO) Consumer Expenditure Survey is used to

estimate the consumption component, and the NSSO Employment and Unemployment

Survey for the earnings component of household welfare. We use the 66th rounds of both

surveys, conducted between 2009 and 2010. This is one of the richest micro-level surveys

37Computing second-order wage effects requires data on cross wage-price elasticities which are not
available. For this reason, they are not included in the estimation.
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for a developing country as approximately 100, 000 households and 460, 000 individuals

are surveyed in each of the 35 states of the country.

The Consumer Expenditure Survey asks each household the value and the quantity

consumed for about 500 consumption items. These items are aggregated into the same

product groups described in the calibration model (see details in Appendix A.7).38 The

survey separates household consumption into ‘purchased from the market’ and ‘home

produced.’ In this paper, the analysis focuses only on the purchased amount, as the price

impacts are expected to mainly work through the purchased items. The substitution

between the quantity produced at home and in the market is therefore not incorporated.39

In any case, this effect is expected to be small as home production is of the order of 3%

of total household consumption.

The Employment and Unemployment Survey is an individual level labor market

survey that has information about wages, labor supply, occupation and 5-digit primary

industry affiliation codes of each individual reported according to the Indian National

Industry Classification (NIC). The matching between the NIC codes and the product

categories is provided in Appendix Table A.7. The earnings of individuals who are af-

filiated with the production of rice, wheat, sugar, meat and ‘other food’ rise due to the

price increase, while the earnings of other individuals are assumed to stay unchanged.40

The elasticities in equation (16) are obtained from various sources as shown in

Appendix Table A.6. The own-price elasticities (εij where i = j) are from Mittal (2006)

and Paul (2011). Cross-price elasticities (εij where i 6= j) are assumed symmetric and are

adapted from Regmi et al. (2001). Wage-price elasticities, εwi , are from Jacoby (2013).41

The mean household expenditure shares θih, computed from the NSS Consumer

Expenditure Survey are shown in Table 6. The distribution of household log per capita

expenditure is divided into deciles and the mean shares are shown for each decile for

both rural and urban households. In general, the table shows that the budget share for

food expenditures is higher for households at the lower end of the distribution. This is

consistent with Engel’s law, which states that the budget share of food falls with income,

even if food expenditure rises. Rural households at the lowest decile spend 9.77% of

their budget on rice consumption, decreasing to 3.78% for those at the highest decile.

The distribution of budget shares for wheat, sugar and other food follow a similar trend,

38The ‘other food’ category in the calibration model and in the econometric analysis covers the same
consumption goods. These goods are starchy foods, other cereal, fruits and vegetables, oil, spices and
beverages. The consumption of tobacco and alcohol is not incorporated in either of the analyses. The
definitions of other food commodities, namely rice, wheat, sugar and meat, are the same.

39This would require estimation of a production function for the household farm, and shadow wages
of individuals. Unfortunately, NSS does not report information on household production activities.

40This approach does not incorporate general equilibrium impacts that arise from factor reallocations
across industries.

41As wage responses are an important part of the model, we consider alternative estimates for this
parameter later in the paper, using elasticities from Ravallion (1990) for Bangladesh and Datt and
Olmsted (2004) for Egypt.

21



Table 6: Household Mean Expenditure Shares (θih) by Commodity (%)

Rural Urban

Rice Wheat Sugar Meat Other
Food

Rice Wheat Sugar Meat Other
Food

Decile

1 9.77 5.79 2.12 10.79 32.22 9.31 7.33 2.46 12.20 32.61

2 8.78 4.14 1.98 10.87 31.51 8.88 6.11 2.37 13.52 31.00

3 7.88 3.22 2.03 11.66 31.36 9.24 4.80 2.03 13.36 30.93

4 7.44 2.80 1.94 12.01 30.80 8.15 4.43 1.94 14.16 30.23

5 7.44 2.71 1.84 13.04 29.88 7.69 4.07 1.78 14.30 29.69

6 6.62 2.32 1.77 12.39 29.64 7.25 3.39 1.69 14.37 28.48

7 6.01 2.05 1.65 12.94 28.61 7.06 2.99 1.55 14.27 27.41

8 5.49 1.79 1.53 12.38 27.61 6.34 2.69 1.35 13.92 25.71

9 5.10 1.40 1.39 12.61 24.70 5.76 2.31 1.15 13.11 23.77

10 3.78 1.62 1.15 11.33 20.81 3.59 1.66 0.81 11.04 20.41

All 6.83 2.79 1.74 12.00 28.71 7.33 3.98 1.71 13.43 28.02

Notes: Mean monthly expenditure shares as a fraction of total expenditures (including non-food), com-
puted from the 66st round of the NSS Household Expenditure Survey. Only purchased items are included.
Deciles are based on household log per capita expenditures. Sampling weights are used in the estimation.

both for rural and urban households. We observe a relatively uniform distribution of the

budget share of meat across deciles, with a slight increase for rural households.

The mean employment shares computed from the NSS Employment and Unemploy-

ment Survey are shown in Table 7. It shows the share of all individuals (not households)

within each industry as it reflects different industry affiliations of members within each

household. The category ‘grains’ includes all grains including rice and wheat, as the In-

dian NIC classification of industry affiliations of individuals does not distinguish between

production of different types of grains such as rice and wheat (see Appendix Table A.7).

As expected, a large share of rural individuals are employed in grain production with a

much smaller share for urban residents. At the lowest decile, 52.27% of the individuals

report grain production as their primary industry, and this number decreases monoton-

ically to 25.21% among individuals in the highest decile. These shares range between

11.29% and 2.04% among urban individuals. The total share of individuals affiliated

with food production is 48.31% in rural and 9.99% in urban areas.

The above variation in expenditure and employment shares plays an important role

in the distributional effects of biofuel policy. If the price increase was uniform across

commodity groups, then household consumption impact Ĉh would be higher (more neg-

ative) at the low end of the distribution due to the relatively high budget share of food

expenditures. On the other hand, the wage impact Êh would also be higher at the lower

end of the distribution, as a relatively higher share of these individuals is affiliated with

food production. The net compensating variation therefore depends on the relative size

of these two channels. In addition, the consumption impact Ĉh is expected to be similar
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Table 7: Employment Shares for Individuals by Commodity (%)

Rural Urban

Grains Sugar Meat Other
Food

Grains Sugar Meat Other
Food

Decile

1 52.27 0.45 1.28 3.06 11.29 0.08 0.80 1.18

2 47.24 0.54 1.46 3.12 11.57 0.08 1.12 1.22

3 46.88 0.76 1.88 3.61 11.16 0.18 1.11 1.26

4 45.61 0.80 1.98 4.29 10.24 0.24 1.28 2.72

5 43.45 0.92 2.03 4.16 8.37 0.20 0.95 1.26

6 41.24 1.05 2.38 4.52 7.44 0.06 1.13 1.45

7 39.19 0.88 2.06 5.08 6.05 0.09 0.67 1.16

8 34.95 1.46 2.42 5.47 4.89 0.24 0.98 0.98

9 30.76 1.22 3.24 5.99 3.42 0.16 0.58 1.00

10 25.21 0.68 3.23 6.23 2.04 0.08 0.49 0.68

All 40.68 0.88 2.20 4.55 7.65 0.14 0.91 1.29

Notes: Employment shares as a fraction of total employment (including non-food)
are computed from the 66st round of the NSS Employment and Unemployment Sur-
vey. Deciles are based on household log per capita expenditures. The matching of the
5-digit NIC affiliation of workers to food categories is shown in Appendix Table A.7.
‘Grains’ denotes all grains including rice and wheat: separate NIC codes for rice and
wheat are not available. Sampling weights are used in the estimation.

between rural and urban areas due to similar household budget structures, while Êh is

expected to exhibit large differences from rural to urban, with a much higher effect in

rural areas. Finally, note that all households are impacted through the consumption

channel, but only a share of households are impacted through wages, leading to a larger

magnitude of average effects through the consumption channel.

Table 5 shows that the price effect of the mandate is not uniform across commodi-

ties, varying between 0.5% and 11.3%. These differential changes in prices is expected

to induce additional distributional impacts across households. Evaluating equation (16)

for each household provides a consistent estimate of the net effect through consumption

and income channels, taking into account relative price increases, the importance of the

commodity in the household budget, as well as the relative share of income from the pro-

duction of these commodities. These estimates are then used to assess the distributional

impact and to obtain a poverty impact for rural and urban households.

5 Pass-through of World Prices to the Domestic Mar-

ket

One important consideration in our estimation of impacts is the extent to which

world prices pass through to domestic Indian prices. India has a history of strong in-

tervention in the form of agricultural subsidies and large-scale government procurement
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and distribution of food (see Kwiecinski and Jones (2010)). This regulatory environment

may restrict the transmission of changes in world prices to domestic prices. Even with no

government regulation, price transmission may be low due to other distortions, such as

imperfectly competitive producers or retailers, as well as imperfect substitution between

imported and domestic goods.

We thus consider both perfect and imperfect pass-through of world prices. For the

latter, pass-through elasticities for each commodity are estimated using monthly time-

series data. The estimates rely on data for the period 2005-11, as data prior to 2005

is not available. This period is somewhat unusual because of the spike in commodity

prices in 2008 (see Figure 3), and the resulting aggressive short run response by the

Indian government.42 Due to limited data availability, it is not possible to identify the

transmission mechanism independently of this policy response. However even though

government intervention may have mitigated the effect of world price shocks in the short-

run (as is clearly evident from Figure 3), they are distortionary and hence potentially

costly in the long run. These costs are not included in our estimates.

The data for estimating domestic prices for rice, wheat, and sugar are obtained from

the Indian Ministry of Public Affairs. They reflect averages of the end-of-month prices

across different zones of India.43 Meat prices are obtained from the Indian Ministry

of Agriculture.44 Grain prices are defined as the average of rice and wheat prices, as

consistent domestic and world prices for grains are not readily available.45 Exchange

rates are obtained from the Federal Reserve Bank of India. All world prices come from

the World Bank Commodity Price database.46

Table 8 shows the summary statistics for price increases and expenditure shares for

the major commodities between January 2005 and May 2011. Domestic price increases

for rice and meat were somewhat similar to world prices with approximately 6 and 15

percentage point deviations, respectively. However, there was a large difference in the

wheat and sugar price series, as can be observed in Figure 3. Movements in world

prices are transmitted to the domestic market but only partially. This suggests that the

42India implemented several temporary measures during this time. These include trade policies (export
bans, minimum export prices, export taxes and temporary removal of tariffs), increasing minimum
support prices, de-listing crops from futures trading, and creating and releasing strategic food reserves.
Some of these measures were in effect only for a few months, but they were largely effective in insulating
the domestic market from price increases during the crisis (see Kwiecinski and Jones (2010)). Most of
these policies were removed eventually.

43The Ministry of Public Affairs collects information from Northern, Western, Eastern, Northeastern
and Southern zones of India. The prices are then averaged to obtain a nationwide price level for each
commodity.

44Average meat (mutton) prices are for Hyderabad, Gujarat, Karnataka, Orissa, Maharashtra, Delhi,
Tamil Nadu, Uttar Pradesh and West Bengal. The 2010 and 2011 prices are extrapolated using the
wholesale price index for meat.

45We need to estimate pass-through elasticity for grains in order to estimate wage impacts under
imperfect pass-though.

46For rice prices, the Thai 5 percent variety is used, as it provides the longest series. U.S. Hard Red
Winter (HRW) prices are used for wheat. Indian prices by product variety are not available.
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Figure 3: Domestic and World Prices for Food Commodities (current US
Dollars)

pass-through coefficients are likely to vary across commodities and need to be estimated

individually.

Table 8: Increase in World and Domestic Commodity Prices (2005-2011)

Rice Wheat Sugar Meat Grains

World 67.74 131.31 151.72 74.33 89.90

Domestic 72.29 61.16 64.11 59.16 67.07

Notes: The price series are first converted to US Dollars by using exchange rates from the Fed-
eral Reserve Bank of India. We show the change during the period January 2005-May 2011, as
it is the longest period available for all commodities.

Different techniques can be used to estimate the transmission elasticity. De Janvry

and Sadoulet (2010) interpret it as the ratio of growth rates in domestic and world

prices. Following their approach, we find a 91.3 percent pass-through elasticity for rice.

However, this method does not control for factors such as trade policy shocks. Another

approach is to estimate a model in levels instead of differences (e.g. Mundlak and Larson

(1992)). We find higher and significant elasticities for all commodities using this approach.

However, Augmented Dickey-Fuller tests suggest that the price series are integrated of
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degree one, and therefore the pass-through coefficients estimated on levels may reflect

arbitrary correlation between the series. In addition, the Johansen test suggests that we

cannot reject the null hypothesis of no cointegration for most of our series.

Given these considerations, we estimate the pass-through elasticities using a single

equation framework, as in Campa and Goldberg (2005) and Campa and Gonzalez Minguez

(2006). The estimating equation is:

∆lnpdt =
∑
k

βk∆lnp
w
t−k + γ∆ln(1 + τt) + δ∆lnet + εt (18)

where pdt is the domestic price vector expressed in domestic currency (rupees) for month

t; k denotes the set of lags where k = 0, 3, 6, 9 and 12; pwt is the world price, τt is the

tariff rate for the commodity, et is the exchange rate and ε is an i.i.d. error term at time

t. All prices are expressed in nominal terms.47 Because our study uses projected prices

for distributional analysis, it is important to distinguish between long and short term

elasticities. Therefore, we include the contemporaneous change in world prices, ∆lnpwt as

well as the quarterly lags in the model, ∆lnpwt−k where k denotes the lag for each quarter.48

The short term elasticity is thus given by the coefficient on the contemporaneous price

level β0. The long-term elasticity
12∑
i=0

βi is defined as the sum of the coefficients.

The results are given in Table 9 and show that the transmission of sugar and rice

prices is statistically significant, although the magnitude of the pass-through transmission

elasticity is small. A 1% increase in the world price of sugar yields a 0.22% increase in the

domestic price in the short run and 0.38% in the long run. The rice and grain elasticities

are also significant, but smaller in magnitude. The estimates are insignificant for meat

and wheat.

The welfare impacts through cost of consumption and wages under imperfect pass-

though are estimated by incorporating the pass-through elasticities that are statistically

significant. The analysis is based on the long run elasticities as we focus on the long

run impacts of the biofuel mandate, consistent with the supply-side adjustments made in

the calibration model of section 2. Based on Table 9, world price increases of sugar, rice

and grains are transmitted by 38.3%, 18.1% and 18.4% respectively, while the changes

in wheat and meat prices are not reflected in the domestic market. The pass-through

elasticity for the ‘grains’ category is estimated as 18.4%. The price effects predicted

by the Monte Carlo model are multiplied by these pass-through elasticities prior to the

estimation of welfare effects. For the ‘other food’ category, the pass-through elasticity is

taken as unity. The new domestic price can be written as:

47The results are similar when all prices are expressed in dollars and the exchange rate variable is
dropped. In addition, Granger-Wald tests suggest that there is no reverse causality from domestic prices
to world prices for any of the commodities.

48We choose quarterly lags because of the dimensionality problem. Given the length of our data series,
it is not possible to consistently estimate the model with all 12 lags.
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Table 9: Price Pass-Through Elasticities (εi,imp)

Short Run (β1) Long Run (
∑

βi)

(1) (2)

Sugar 0.219*** 0.383***

(0.043) [16.40]

Rice 0.057*** 0.181***

(0.021) [7.97]

Wheat 0.008 0.006

(0.035) [0.01]

Meat -0.023 0.056

(0.068) [0.06]

Grains 0.069** 0.184**

(0.024) [5.62]

N 76 76

Notes: Standard errors for short run elasticities are reported
in parenthesis and F -statistics for long-run elasticities are in
square brackets. Grain prices are average of rice and wheat
prices. Grains include rice and wheat and its pass-through elas-
ticity is used to compute wage impacts. Only the significant
long-run elasticities are incorporated in the estimation. ∗∗∗

p < 0.01, ∗∗p < 0.05 and ∗p < 0.1.

dlnpi,imp = εi,imp ∗ dlnpi (19)

where εi,imp is the pass-through elasticity. The welfare effects under imperfect pass-

through are computed using these price changes. For perfect pass-through, world prices

are perfectly transmitted to the domestic market.

6 Household Welfare Effects

Consumption baskets differ across households due to a variety of factors such as cul-

tural attributes, demographic characteristics, availability of different consumption items,

preferences and more importantly, their income levels. Relatively poor households with

low per capita incomes tend to spend a higher share of their income on food, particularly

cheaper calories such as grains. Each household is affected by a price change in good i

proportional to the budget share of good i, as well as a price change in good j depending

upon the extent of substitution between i and j. The mean consumption impact Ĉh is

estimated for each household using the first and second terms of equation (16), taking

into account both direct effects and the adjustment of the household budget. We pick

random draws from the vector of price increases produced by the Monte Carlo model,

then estimate the consumption effect for each household for each draw. Five hundred

iterations were run to reach a 10% random sample of Monte Carlo predictions of price

changes. This produces a distribution of consumption effects for each household with
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mean Ĉh and standard error σCh .49

Table 10 shows the consumption impacts Ĉh and σCh for each decile of the per

capita expenditure distribution for rural and urban households under perfect and imper-

fect pass-through. Under the former, households at the lowest decile suffer a welfare loss

of about 4.7% of their initial expenditure level through cost of consumption, while this

figure is about 3.1% for the highest decile. For urban households, these losses are some-

what higher, respectively 4.9% and 3.2%. The average consumption effects are similar for

rural and urban households since their expenditure shares are similar. Under imperfect

pass-through, all effects decline in magnitude. Rural households at the lowest end of the

distribution experience a 2.7% decline in welfare from consumption and this effect de-

creases monotonically at higher deciles with the households in the highest decile suffering

a 1.75% welfare loss. Recall that only rice and sugar price shocks are transmitted in this

case.

Figures 4 and 5 plot the nonparametric local polynomial regression of the household-

level consumption impacts on household log per capita expenditure. The positive slopes

in these figures indicate that consumption effects are regressive, i.e. poorer households

bear a higher welfare loss. Under imperfect pass-through, the effect is regressive but with

a smaller magnitude across both rural and urban households.

Table 10: Consumption Effect

Perfect Price Pass-through Imperfect Price Pass-through

Rural Urban Rural Urban

Mean SE Mean SE Mean SE Mean SE

Ĉh σCh
Ĉh σCh

Ĉh σCh
Ĉh σCh

Decile

1 -4.672 0.055 -4.901 0.058 -2.724 0.041 -2.762 0.039

2 -4.394 0.052 -4.724 0.056 -2.657 0.040 -2.625 0.037

3 -4.302 0.051 -4.584 0.054 -2.637 0.039 -2.623 0.037

4 -4.216 0.050 -4.497 0.053 -2.587 0.039 -2.555 0.036

5 -4.213 0.049 -4.398 0.052 -2.511 0.038 -2.502 0.035

6 -4.057 0.048 -4.223 0.050 -2.484 0.037 -2.407 0.034

7 -3.957 0.046 -4.063 0.048 -2.394 0.036 -2.309 0.033

8 -3.762 0.044 -3.825 0.045 -2.299 0.034 -2.154 0.030

9 -3.482 0.040 -3.547 0.042 -2.074 0.031 -2.049 0.029

10 -3.140 0.036 -3.170 0.037 -1.750 0.026 -1.835 0.026

All -4.019 0.047 -4.193 0.049 -2.412 0.036 -2.382 0.034

Notes: The mean and standard error (SE) of the consumption effects are shown by decile
according to equation (16). Deciles are determined based on per capita expenditure of the
household. The results with imperfect pass-through incorporate price pass-through elastic-
ities.

Wage incomes are affected by price changes in good i according to the number of

household members m who participate in its production, as well as the contribution of

49The results are robust to sample sizes of 20% and 50%.
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Figure 4: Consumption Effect (Ĉh) - Rural Households
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Notes: Local polynomial regression of Ĉh on log of household per capita expenditure.

Figure 5: Consumption Effect (Ĉh) - Urban Households
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Notes: Local polynomial regression of Ĉh on log of household per capita expenditure.

each member to the household budget θmwih . Wage effects are also computed iteratively by

resampling from the vector of price increases produced by the Monte Carlo estimation.

For each iteration, the individual-level impact is aggregated to the household level by

pre-multiplying with the shares θmwih . This produces a distribution of wage impacts for

each household with mean Êh and a standard error σEh .

Table 11 shows the change in household welfare through the wage income channel
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by deciles of log per capita expenditure. Under perfect pass-through, rural households at

the lowest decile experience a sizable welfare gain of roughly 15.5%, mainly due to the

large share of households involved in food production. There is less participation in food

production by households in the highest decile, hence their welfare gain is only 0.3%. The

effect among urban areas is also progressive, but much smaller in magnitude.

Under imperfect pass-though, the impact on wage incomes is still progressive but

smaller. Here only grain and sugar prices affect wage incomes. Rural wage incomes in

the lowest decile increase by 3.8%, while this estimate is only 0.1% for households at the

highest decile. For urban households, the impact is generally lower than 0.3%. Figures 6

and 7 show that the distribution of wage effects has a negative slope for both rural and

urban households, although quite muted under imperfect pass-through.

Table 11: Wage Income Effect

Perfect Price Pass-through Imperfect Price Pass-through

Rural Urban Rural Urban

Mean SE Mean SE Mean SE Mean SE

Êh σEh
Êh σEh

Êh σEh
Êh σEh

Decile

1 15.460 0.057 0.596 0.068 3.801 0.017 0.193 0.020

2 10.532 0.057 0.396 0.071 2.363 0.017 0.157 0.026

3 8.106 0.057 0.351 0.074 2.501 0.019 0.203 0.035

4 6.907 0.059 0.195 0.072 2.185 0.021 0.098 0.028

5 5.019 0.059 0.080 0.070 1.430 0.021 0.027 0.025

6 3.354 0.059 0.079 0.068 0.868 0.022 0.020 0.020

7 3.003 0.058 0.055 0.068 0.805 0.025 0.013 0.019

8 1.416 0.061 0.041 0.076 0.277 0.023 0.018 0.035

9 1.109 0.064 0.022 0.079 0.226 0.028 0.002 0.031

10 0.280 0.068 0.007 0.086 0.097 0.039 0.004 0.052

All 5.519 0.060 0.182 0.073 1.455 0.023 0.074 0.029

Notes: The mean and standard error of the wage income effect are shown by decile ac-
cording to equation (16). The results with imperfect pass-through incorporate the price
pass-through elasticities.

The consumption and wage income effects are combined in equation (16) to esti-

mate the net welfare effect or negative compensating variation for each household. This

aggregation is done for each iteration to arrive at a distribution of welfare effects for

each household with mean Ŵh and standard error σWh
. Table 12 shows that for rural

households, the total welfare effect is positive for the lowest five deciles, and negative for

the highest five deciles. For the lower half of the distribution, the positive effect through

wages dominates the negative effect of the increase in cost of consumption. However, the

consumption effect dominates for the richer households, leading to a net welfare loss. For

urban households, consumption losses exceed wage gains across the distribution, hence

the net effect is negative for all deciles. The local polynomial regressions (Figures 8 and

30



9) show that the net effect is progressive with a sharp negative slope, due to the large

gains experienced by the poorest rural households. Because of the weaker effect on wage

incomes, the net welfare effect is regressive for urban households.

Under imperfect pass-through, only the lowest decile among the rural households

registers a positive welfare gain. All urban households experience a welfare loss, mainly

due to their small wage gains. Similar to the perfect pass-though case, the results sug-

gest a progressive distributional impact for rural households and regressive impacts for

urban households since the latter do not benefit from wage increases. Welfare effects in

urban areas are driven mainly by consumption, which disproportionately hurts poorer

households.

Figure 6: Wage Income Effect (Êh) - Rural
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Notes: Local polynomial regression of Êh on log per capita household expenditure.

Impact on Poverty

The poverty impact is estimated by computing the number of poor individuals

before and after the price change. Let the poverty line be defined by z. Then the poverty

rate P is the headcount ratio, i.e., the proportion of population below the poverty line:

P =
1

K

K∑
i=1

I(xi ≤ z) (20)

where K is the total number of individuals, xi is per capita expenditure of individual i,

and I(·) is an indicator function that takes the value 1 for individuals for whom xi ≤ z.

The price increase impacts household expenditures through two channels. First, the

higher prices increase wage incomes of individuals who are producers. This will increase
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Figure 7: Wage Income Effect (Êh) - Urban
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Notes: Local polynomial regression of Êh on log per capita household expenditure.

Table 12: Welfare Effect

Perfect Price Pass-through Imperfect Price Pass-through

Rural Urban Rural Urban

Mean SE Mean SE Mean SE Mean SE

Ŵh σWh
Ŵh σWh

Ŵh σWh
Ŵh σWh

Decile

1 10.788 0.055 -4.304 0.058 1.077 0.041 -2.568 0.039

2 6.139 0.052 -4.327 0.056 -0.294 0.040 -2.468 0.037

3 3.804 0.051 -4.232 0.054 -0.136 0.039 -2.420 0.037

4 2.691 0.050 -4.303 0.053 -0.402 0.039 -2.457 0.036

5 0.806 0.049 -4.318 0.052 -1.081 0.038 -2.475 0.035

6 -0.703 0.048 -4.144 0.050 -1.616 0.037 -2.388 0.034

7 -0.954 0.046 -4.008 0.048 -1.589 0.036 -2.296 0.033

8 -2.346 0.044 -3.785 0.045 -2.022 0.034 -2.136 0.030

9 -2.372 0.040 -3.525 0.042 -1.848 0.031 -2.047 0.029

10 -2.860 0.036 -3.163 0.037 -1.654 0.026 -1.831 0.026

All 1.499 0.047 -4.011 0.049 -0.957 0.036 -2.309 0.034

Notes: The mean and standard error (SE) of the total welfare effect are presented for each
decile according to equation (16).

the per capita expenditure of the household proportional to the share of wage income

from industry i in the total household budget. This shifts the household expenditure

distribution upwards. The second effect is from an increase in the price vector which

makes the same basket of good more costly and therefore shifts the poverty line z to the

right. From condition (16), this effect is captured by:
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Figure 8: Welfare Effect (Ŵh) - Rural
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dz =
∑
i

θidlnpi +
1

2

∑
i

∑
j

εijθi(dlnpi)(dlnpj) (21)

where θi is the average expenditure share of the ‘marginal’ poor.50 We use the interna-

tional poverty line (z) of $1.25 per day which is equivalent to Rs. 701.25 per month.51

This poverty line is used to partition poor and non-poor individuals, as well as households

who change their poverty status from non-poor to poor or vice versa.

The change in the poverty rate is estimated by adjusting household expenditure

with respect to the changes in income Ê, while shifting the poverty line upwards using

the consumption share of the marginal poor according to equation (21) (De Janvry and

Sadoulet (2010), Porto (2010)). Each household is marked according to I(xi ≤ z) as

poor and non-poor before and after the policy change. The change in the poverty rate is

computed as ∆P = Ppre − Ppost where Ppre and Ppost represent poverty rates before and

after the price increase, respectively. The individuals who were marginally poor prior

to the price change may no longer be poor if the income share of household members

affiliated with the industries
∑
m

θmwi is relatively high. The marginally non-poor may also

become poor if
∑
m

θmwi is low, and as a result the poverty line shifts to a level higher than

their per capita expenditure.

As before, we resample from the price changes produced by the Monte Carlo pro-

cedure. This yields a distribution of poverty impacts with mean ∆P̂ and standard error

50As in De Janvry and Sadoulet (2010), the ‘marginal poor’ is defined as households within a 5 percent
range of the poverty line.

51Conversion is done using 2010 purchasing power parity (PPP) of Rupees 18.7 (World Bank Devel-
opment Indicators). A month is assumed to be 30 days.
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Figure 9: Welfare Effect (Ŵh) - Urban
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σP . For each draw, the mean consumption, wage and total impacts Ĉh, Êh, Ŵh and the

change in the poverty rate ∆P̂ are estimated, so that the results presented in Tables 10,

11, 12 and 13 are all based on the same price changes.

Table 13 summarizes the poverty impact under perfect and imperfect pass-through.

It shows that compared to the baseline price change, the poverty rate is 4.8% points lower

(negative) under perfect pass-through for rural households. This corresponds to roughly

40 million less poor individuals based on the 2011 population census. Under imperfect

pass through, wage gains are largely muted and we estimate an increase in poverty of

about 0.66% points. This translates to about 5.5 million newly poor individuals. For

urban households, poverty increases under both perfect and imperfect pass through,

where the impacts are estimated to be between 0.65 and 1.03% points. This corresponds

to about 2.5 and 4 million more poor individuals, respectively.

Table 13: Change in the Mean Poverty Rate

Rural Urban

Change in New Poor Change in New Poor

poverty rate (millions) poverty rate (millions)

Perfect Pass-Through:

∆P̂ -4.794*** -39.942 1.038*** 3.913

σP ∗ 100 (0.966) (0.005)

Imperfect Pass-Through

∆P̂ 0.663*** 5.524 0.653*** 2.463

σP ∗ 100 (0.649) (0.062)

Notes: Mean and standard error of the change in poverty rate ∆P are reported. Standard
errors are multiplied by 100. $1.25 poverty line is converted to Rupees using 2010 PPP of
18.7 (WDI, 2013). The number of new poor is computed using 2011 population for rural and
urban households.
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Alternative Wage-Price Elasticities

An important component of the welfare estimation is the response of wages to price

changes. When this elasticity is high, positive wage impacts offset negative consumption

impacts, as seen in the previous analysis. It is therefore important to consider alternative

estimates of the wage-price elasticity. While the literature on this topic is surprisingly

scarce, we consider two papers that are most relevant to a developing country setting

such as India. Ravallion (1990) studies the responsiveness of agricultural wages to food

prices in Bangladesh, and estimates the long-run (steady-state) elasticity to be 0.47. In a

more recent paper, Datt and Olmsted (2004) model agricultural wages in Egypt using a

dynamic specification. They find that in the long run agricultural wages are homogeneous

with respect to a change in food prices, and nominal wages fully catch up with food prices.

This implies a wage-price elasticity equal to unity.

The econometric model is re-estimated under these alternative elasticities, shown

in Table 14. Under a lower wage-price response as in Ravallion (1990), poverty still

decreases in rural areas, albeit by a lower magnitude (1.2 percentage points or about 10

million individuals). The poverty impacts are smaller under a lower wage-price elasticity

since there is a smaller upward shift of the expenditure distribution. The urban poverty

rate increases by about one percentage point. With imperfect price transmission, rural

and urban poverty increase by 1.37 and 0.64 percentage points, respectively. Estimates

for rural households are especially sensitive, because a larger number of rural individuals

work in agriculture.

If the price increases are fully reflected in the wages, as suggested by Datt and

Olmsted (2004), then the expenditure distribution will shift up proportionately with

prices and households will exhibit significant welfare gains. Under perfect pass-through,

the estimates suggest that the rural poverty rate decreases by 6.2 percentage points, while

the urban poverty rate increases by about one percentage point. Rural poverty declines

by about 52 million people under perfect pass-through while urban poverty increases by

4 million. The sign of the rural poverty impact changes to a small positive estimate even

under imperfect pass-through. Once again, urban poverty is not substantially affected.

Although the poverty estimates are sensitive to the wage-price elasticity some com-

mon trends emerge. First, rural poverty decreases under perfect pass-through and in-

creases under imperfect pass-through in all cases. Second, urban poverty is robust to

changes in wage-price elasticity, as it is estimated to increase by about 1 percentage

point regardless of the wage response. Finally, the impact on welfare is progressive across

rural households and regressive for urban households, with a larger magnitude in the

former case.
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Table 14: Change in the Mean Poverty Rate - Alternative Wage Responses

Rural Urban

Change in New Poor Change in New Poor

poverty rate (millions) poverty rate (millions)

Wage -Price Elasticity εi = 0.47 (Ravallion 1990, Bangladesh)

Perfect Pass-Through:

∆P̂ -1.169*** -9.734 1.044*** 3.935

σP *100 (0.138) (0.088)

Imperfect Pass-Through

∆P̂ 1.372*** 11.433 0.642*** 2.422

σP *100 (0.311) (0.109)

Wage-Price Elasticity: εi = 1.00 (Datt and Olmstead 2004, Egypt)

Perfect Pass-Through:

∆P̂ -6.215*** -51.799 1.036*** 3.908

σP *100 (0.000) (0.056)

Imperfect Pass-Through

∆P̂ 0.320*** 2.668 0.642*** 0.025

σP *100 (0.255) (0.000)

Notes: Mean and standard error of the change in poverty rate ∆P are reported. Standard
errors are multiplied by 100. The number of new poor is computed using 2011 population for
rural and urban households.

7 Variation in Welfare Effects

The analysis so far was based on heterogeneity across households in terms of their

consumption baskets and their reliance on different sources of income. These sources

of variation, however, are expected to be correlated with other characteristics of the

households. It is possible that certain groups are impacted more or less than others

due to characteristics such as factor ownership or dietary preferences. In this section,

we compare the estimated components of welfare change, Ĉ and Ê, and net welfare

effect Ŵ across different groups of households using a series of mean comparison tests.

The estimates are presented under the perfect pass-though assumption and the baseline

wage-price elasticity.

The results are shown in Table 15. We first investigate factor ownership across

households, particularly land and skilled labor. Column (1) suggests that rural landown-

ers on average see a 3.9% decline in welfare from consumption effects Ĉh, while landless

households lose 4.1% of their welfare. This is because landless households tend to be

poorer and spend a large share of their expenditure on food items. The difference be-

tween the two effects is 0.206% points, i.e. landowners see a smaller decline in welfare

(by 0.206% points) through the increase in cost of consumption. Column (2) suggests

that the wage effect is higher for landowners than for the landless, with a difference of
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Table 15: Variation in the Mean Welfare Effect

Rural Urban

Ĉh Êh Ŵh Ĉh Êh Ŵh

(1) (2) (3) (4) (5) (6)

Land Ownership

Landowner -3.922 6.648 1.389 -3.963 0.142 -3.875

(0.007) (0.024) (0.032) (0.008) (0.002) (0.008)

Landless -4.128 5.364 -0.228 -3.742 0.096 -3.683

(0.030) (0.119) (0.126) (0.013) (0.002) (0.013)

∆ 0.206*** 1.124*** 1.617*** -0.221*** 0.046*** -0.191***

(0.034) (0.116) (0.152) (0.016) (0.003) (0.015)

t-stat 6.067 11.049 10.651 -13.684 15.619 -12.516

Skill

Unskilled (≤ primary) -4.102 7.840 2.381 -4.313 0.226 -4.149

(0.010) (0.033) (0.046) (0.011) (0.003) (0.011)

Skilled (> primary) -3.748 4.887 0.163 -3.701 0.077 -3.661

(0.010) (0.031) (0.038) (0.008) (0.001) (0.008)

∆ -0.354*** 2.953*** 2.217*** -0.612*** 0.149*** -0.487***

(0.014) (0.047) (0.060) (0.014) (0.003) (0.013)

t-stat -25.849 62.987 -36.783 -44.047 57.683 -36.501

Gender

Male -3.920 6.631 1.392 -3.908 0.128 -3.825

(0.007) (0.025) (0.033) (0.007) (0.001) (0.007)

Female -4.040 6.259 0.618 -3.928 0.145 -3.857

(0.023) (0.073) (0.096) (0.021) (0.004) (0.020)

∆ 0.120*** 0.373*** 0.774*** 0.020 -0.017*** 0.031

(0.026) (0.077) (0.106) (0.022) (0.004) (0.021)

t-stat 5.080 4.811 7.328 0.926 -4.345 1.523

Religion

Hindu -3.965 6.836 1.430 -3.834 0.129 -3.761

(0.008) (0.028) (0.036) (0.008) (0.002) (0.008)

Islam and Other -3.846 5.762 1.036 -4.059 0.134 -3.963

(0.014) (0.047) (0.060) (0.012) (0.002) (0.011)

∆ -0.120*** 1.074*** 0.394*** 0.225*** -0.005 0.202***

(0.015) (0.057) (0.069) (0.015) (0.003) (0.014)

t-stat -7.789 18.875 5.734 15.486 -1.626 14.663

Notes: Household classification is based on characteristics reported in the 66th round of the NSS House-
hold Expenditure Survey. Gender refers to the gender of the household head. A household is defined
as skilled if the head has more than primary education. t-statistics of the mean comparison tests are
reported. ∆ denotes the difference in mean impacts.
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1.124% points. These differences tell us that it is important to examine both consump-

tion and wage effects. As landowners benefit more through wages, landless individuals

are hurt more through cost of consumption. The total welfare effect in column 3 shows

that landowners’ welfare increases by 1.4% while the landless see a decline of 0.23% - the

difference between these estimates is statistically significant.

On the other hand, urban landowners experience a higher welfare loss from con-

sumption relative to landless households. The results in column (4) suggest that welfare

effects through consumption, Ĉh, are 0.221% points higher (more negative) for urban

landowners. This is because landless households in urban areas are mostly engaged in

manufacturing and services where the returns to labor are higher. As these households

are generally better off compared to their rural counterparts, their expenditure share of

food tends to be lower, leading to a smaller consumption effect. The results in column

(5) show that the wage effect is higher among landowners relative to the landless, and

the overall welfare loss is slightly higher for the former group.

Next, we compare the skill level of the household head, where a skilled individual

is defined as someone with more than a primary education. As expected, households

with an unskilled head experience greater welfare loss through an increase in cost of

consumption in both rural and urban settings. This can again be explained by the fact

that unskilled households tend to be poorer with a higher expenditure share of food.

However, the increase in wage income is higher for unskilled households - by 2.953%

points in rural areas and 0.149% points in urban areas. As agriculture is an unskilled

labor intensive industry, the price increase disproportionately benefits unskilled labor

by increasing their earnings. This leads to the pro-poor effect through wage incomes

presented in the previous section. Relative to skilled households, the total welfare effect

for unskilled households is 2.217% points higher for rural and 0.487% points lower for

urban residents where the consumption effect dominates.

Gender comparisons among households is shown in the third panel.52 Households

with a male head suffer less through the increase in cost of consumption, by 0.120%

points. They also benefit more from an increase in wage incomes - by 0.373% points

relative to female heads. As a result, rural households with a male head experience a

larger gain in welfare (by 0.774% points). Urban households headed by a female exhibit

higher wage impacts, but the overall difference is not significant.

Finally, we check if there are any clear differences in welfare effects among house-

holds with different religious affiliations. This is important because dietary habits may

be quite different between Hindus and Muslims, the two largest groups, with many Hin-

dus being vegetarians. We observe that rural Hindus suffer larger consumption losses

but gain more in wage incomes, with a net positive and significant welfare impact than

52There are 6,330 and 5,120 female heads of household among rural and urban residents, corresponding
to 12% and 14% of the sample, respectively.
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Muslims. The opposite holds for urban households. While the difference in wage effects

are insignificant, their overall welfare loss is 0.202% points smaller than for other religious

groups.

8 Concluding Remarks

Many countries, including the US, China, India and members of the European Union

have adopted policies to promote biofuels and reduce their dependence on imported oil.

Most of the literature on the effect of biofuel policies has focused on estimating the effects

of diverting crops from food to energy on food prices. In general, these models suggest

price increases of 30% or more in the short-run. In this paper, we study how increased

food prices may impact household consumption and income in a developing country. We

show that even with modest effects of energy policy on food prices (of the order of 5-11%),

the impact on the poor may be significant and can go in either direction. Wage effects are

an order of magnitude higher than consumption effects among rural households because

they work mainly in agriculture. If world prices pass through perfectly, we show that on

net, about 36 million people get out of poverty even though poverty actually increases in

urban areas. However, with imperfect pass-through, the big jump in welfare from wage

increases disappears, and poverty increases among both rural and urban households.

The broad policy implication of our analysis is that U.S. biofuel policy may lead

to significant poverty, mostly in towns and cities where consumption effects dominate.

But in rural areas, there may be a reduction in poverty. However, when governments

intervene to protect the domestic market from world price shocks, poverty may increase

universally. This may be an additional cost of government intervention, beyond the other

distortionary losses that are well known.

We have examined the effect of a domestic policy of one large country on another.

These impacts may multiply several fold if other countries with rapidly-growing trans-

portation sectors also turn to biofuels as a way of reducing their energy dependence.

Some countries such as those of the European Union already have a significant mandate

in operation, although not as large as the United States mandate. India and China have

mandates in the books.53 In the long-run of course, these price effects may be mitigated

by bringing new land under production and technological improvements in farming. How-

ever, to the extent that we must use scarce land, water and other resources to produce

more food and energy, the supply cost of food commodities is likely to increase, and

food price shocks may linger for an extended time period. Other factors such as climatic

shifts and droughts may also affect commodity prices and exacerbate the distributional

impacts.

53On the other hand, mandates in other nations may be partially offset if the US scales down its
mandate in coming years, especially in an environment where oil and gas prices remain highly competitive.
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The framework we adopt has several limitations that can be examined in future

research. The impact of price increases may change within the country (e.g., by state)

depending on geographical factors, market structure or state-specific policies. These

differences can be incorporated by estimating state-specific pass-through elasticities. In

fact, the pass-through elasticities for key crops such as rice and wheat may be indirectly

estimated by computing pass-throughs for crops that are not subject to government

intervention, then using these counter-factual estimates in the analysis to better measure

the true costs of government intervention in the cereal market. This procedure may be

more accurate than the time-series estimations we perform in the paper.

Another important data limitation is that the welfare estimations focus only on the

wage income and consumption channel, excluding important channels such as agricul-

tural profits. Third, this paper does not take into account general equilibrium impacts

driven by factor reallocation across sectors. This requires price data from other sectors,

including services such as education and health, data for which is not readily available

for a developing country like India. However, the magnitude of the general equilibrium

impacts is likely to be small as service sectors are highly regulated in India and they may

not be very sensitive to commodity price shocks.

This research can be extended in other directions. The micro-level impacts in India

can be compared with that in other countries with significant poor populations to check

if the nature of the welfare effects is fundamentally different and idiosyncratic to diet

and other cultural factors. For example, societies in which the diet is based on corn or

a higher consumption of meat and dairy may be impacted differently. Countries adopt

different policies to mitigate the effect of price shocks, which can again be compared to

obtain policy insights. Ultimately, these price shocks will affect nutritional intake among

individuals and affect the allocation of calories within each household. Each consumption

item in the NSS data we have used can be matched to its calorie, fat and protein content

using the FAO nutritional database. The energy policy induced price shock is likely to

alter the consumption structure of each household. It may then be possible to estimate the

number of individuals that will move below the recommended minimum daily nutritional

intake, and isolate the effects on particular segments of the population, such as women

and children.
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A Appendix: Details of Data Used in Estimation

The model used to predict the effect of the biofuel mandate on food prices is adapted

from Chakravorty et al. (2014).54 It is solved using GAMS software. Here we provide

additional data and specifications used in the calibration.

Table A.1 shows crop yields and land endowment for the base year 2010 by land

quality and region.

Table A.1: Endowment of Land (million hectares) and Crop Yields by Land
Quality and Region (tons per hectare)

Land quality Land available Wheat Rice Sugar Other Crops

U.S.

High 60 6.8 (1.50%) 7.1 (1.19%) 86 (1.10%) 4.5 (1.50%)

Medium 80 5.0 (1.25%) 5.1 (1.10%) 72 (1.10%) 3.5 (1.25%)

Low 30 2.9 (1.00%) 3.5 (0.90%) 65 (1.10%) 2.5 (1.00%)

India

High 70 4.0 (1.35%) 3.2 (1.18%) 79 (1.10%) 2 (1.35%)

Medium 50 1.8 (1.15%) 2.8 (1.11%) 60 (1.10%) 1.5 (1.15%)

Low 10 1.5 (0.90%) 3 (0.90%) 52 (1.10%) 1 (0.90%)

ROW

High 200 2.8 (1.25%) 4 (1.16%) 70 (1.1%) 2.2 (1.25%)

Medium 950 1.8 (1.10%) 3 (1.10%) 60 (1.10%) 1.8 (1.10%)

Low 950 0.8 (0.90%) 2 (0.90%) 50 (1.10%) 0.9 (0.90%)

Sources: FAO-IIASA (2002) and Fischer et al. (2001). Numbers in parenthesis represent the an-
nual growth rate of yield.

Parameters for the cost of converting new land into farming (equation (9)) are

reported in Table A.2.

Table A.2: Parameters for the Cost of Land Conversion

ψ1 ψ2

U.S. 430 431

India 200 200

ROW 26 26

Source: Gouel and Hertel (2006).

The parameters for the production cost (equation (10)) are reported in Table A.3.

For rice, wheat, sugar and ”other crops,” we assume that one ton of crop produces 0.85

tons of the final food commodity (FAO, 2014), assumed uniform across regions. A portion

54They develop a model to study the effect of the U.S. and E.U. biofuel mandates on the price of a
basket of food commodities. We use a disaggregated form of their model for the five commodities of
interest.
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Table A.3: Parameters for Production Cost

Rice Wheat Sugar Other Crops
η1 η2 η1 η2 η1 η2 η1 η2

U.S. 1.15 1.50 1.15 1.50 1.20 1.55 1.15 1.50
India 1.55 1.80 1.55 1.80 1.55 1.80 1.55 1.80
ROW 1.50 1.75 1.50 1.75 1.50 1.75 1.50 1.75

Source: Chakravorty et al. (2014)

of ”other crops” is used as animal feed. The quantity of meat and dairy produced from

one ton of ”other crops” (feed ratio) is region-specific and adapted from Bouwman (1997).

We use a feed ratio of 0.4 for U.S. and 0.25 for India and ROW.

Regional demands (for rice, wheat, sugar, meat and dairy, other food and trans-

portation fuel) are given by equation (11). The constant Ai is calibrated to reproduce the

demand in the base year and it is given by: Ai =
Di

Pαi
i y

βi
i N

. The data used to calibrate

Ai is shown in Table A.4.

Population projections are taken from the United Nations Population Division

(UNDP, 2010b).55 India’s population is expected to increase to about 1.45 billion people

in 2022. GDP per capita is non-stationary and is assumed to increase at an exogenous

and declining rate. We assume GDP per capita to be increasing at an annual rate of 1.5%

for the U.S., 5% annually for India and 2% annually for ROW (World Bank, 2014b).

Energy is provided by a mix of gasoline and biofuels. We consider an upward sloping

curve for crude oil supply. The inverse supply curve is given by: co = Bqαoo where co is

the marginal cost of crude oil, qo is the world supply of crude oil used for transportation,

αo is the supply elasticity from Chen et al. (2012) and equals 0.5. B is a constant to be

calibrated and equals B = q−αoo co. For the base year 2010, the marginal cost of crude

oil is US$50 per barrel as in Fischer and Salant (2012) and the world supply of crude oil

used for transportation is 8.1 billion gallons (EIA, 2014). Thus, the constant B equals

2.70. Crude oil is transformed into gasoline: one gallon of oil produces 0.47 gallons of

gasoline. The cost of converting oil into gasoline is the same across different regions and

equal to 0.46 per gallon (Chakravorty et al., 2014). Since transport fuel is in energy units,

we convert gallons into Megajoules (MJ). A gallon of gasoline yields 120 Megajoules of

energy and a gallon of ethanol gives 80 MegaJoules. Finally, transport fuel is transformed

into Vehicle Miles Traveled (VMT): one MJ of transportation energy equals 0.177 VMT

for a gasoline-powered car (Chen et al., 2012).

Transport energy supply qe is given by equation (12). The parameter λ is a constant

which is calibrated to reproduce the base-year production of transport fuel. It is given

by

55We use estimates from the United Nations (UN Population Division, 2010) based on medium range
fertility projections. It predicts a 2050 world population of 9 billion.
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Table A.4: Calibration of Per Capita Demand Functions (Base Year = 2010)

US India ROW

Population (millions) 310 1.224 5.360

Consumption (dollars per capita) 47,200 3,500 10,000

Rice

Consumption (kg per capita) 9 70 53

Price (dollars per ton) 400 400 400

Price elasticity -0.1 -0.5 -0.15

Income Elasticity 0.01 0.11 0.65

Constant (Ai) 0.0147 0.5705 0.0003

Wheat

Consumption (kg per capita) 85 60 65

Price (dollars per ton) 300 300 300

Price elasticity -0.1 -0.50 -0.15

Income Elasticity 0.01 0.11 0.65

Constant (Ai) 0.1350 0.4235 0.0004

Sugar

Consumption (kg per capita) 67 24 28

Price (dollars per ton) 400 400 400

Price elasticity -0.50 -0.74 -0.15

Income Elasticity 0.01 0.62 0.65

Constant (Ai) 1.2033 0.0128 0.0002

Other food

Consumption (kg per capita) 119 80 116

Price (dollars per ton) 350 350 350

Price elasticity -0.10 - 0.50 -0.15

Income Elasticity 0.01 0.62 0.65

Constant (Ai) 0.192 0.010 0.001

Meat/dairy

Consumption (kg per capita) 375 75 70

Price (dollars per ton) 1,960 1,960 1,960

Price elasticity -0.50 -1.10 -0.19

Income Elasticity 0.89 0.70 1.20

Constant (Ai) 0.001 1.036 4.684E-06

Transport fuel

Per capita demand (VMT per capita) 9,250 69 752

Price (dollars per VMT) 0.14 0.23 0.23

Price elasticity -0.7 -0.21 -0.25

Income Elasticity 0.97 1.12 1.05

Constant (Ai) 0.069 0.005 0.032

Sources: Consumption figures for food commodities: FAO (2014), transport fuel: EIA
(2014); prices: World Bank (2014a); own-price and income elasticities for transport fuel:
Hertel et al. (2007) and Dimaranan et al. (2007); own-price and income elasticities for
food commodities (U.S.):Hertel et al. (2007) and Regmi et al. (2001); own-price elastic-
ities for food commodities (ROW): Roberts and Schlenker (2013) and from Dimaranan
et al. (2007); income elasticities for food commodities (ROW): Dimaranan et al. (2007);
own-price and income elasticities for food commodities (India): Paul (2011), Hertel
et al. (2007) and Mittal (2006); population figures: United Nations Population Division
(UNDP, 2010b); and per capita income: World Bank (2014b).
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λ =
qe[

µgq
ρ−1
ρ

g + (1− µg)(qbf + qbs)
ρ−1
ρ

] ρ−1
ρ

(A.1)

The data used to calibrate λ is reported in Table (A.5).

Table A.5: Calibration of the Transport Fuel Production Function (2010)

US India ROW

Transport fuel supply qe (MJ) 16,200 480 22,800

Gasoline supply qg (MJ) 15,840 466 21,840

Biofuels supply qbf (MJ) 800 16 720

Share of gasoline µg 0.10 0.05 0.05

Elasticity of substitution ρ 2 2 2

Constant λ 1.189 1.115 1.130

Notes: MJ: MegaJoules; Production of transport fuel (qe) equals consumption in
our framework since transport fuel is not traded; Supply of biofuels (qbf ) and gaso-
line (qg) are from EIA (2014); the share of gasoline is calculated as the ratio of
gasoline (qg) to transport fuel supply (qe); elasticities of substitution are from Her-
tel et al. (2010).

Table A.6: Elasticities Used in the Econometric Estimation (εij)

Wheat Rice Sugar Meat Other food

Cross-price Elasticities

Wheat -0.50 0.10 0.05 -0.10 0.05

Rice 0.10 -0.50 0.05 -0.10 0.05

Sugar 0.05 0.05 -0.74 0.10 0.05

Meat -0.10 -0.10 0.10 -1.10 -0.10

Other food 0.05 0.05 0.05 -0.10 -0.50

Wage-price Elasticity = 0.826

Notes: Own-price elasticities are from Paul (2011), Hertel et al. (2007) and Mittal (2006).
Cross-price elasticities are assumed symmetric and adapted from Regmi et al. (2001).
Wage-price elasticity is from Jacoby (2013).
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Table A.7: Matching between Commodities, Expenditure Categories and
Industries

Products NSS
Codes

NSS Description NIC
Codes

NIC Description

(1) (2) (3) (4) (5)

Rice 101-102 Rice 1111 Growing of food grain crops

103 Chira 1403 Activities establishing a crop, promoting its growth or pro-
tecting it from disease and insects.

104 Khoi, lawa 1404 Harvesting and activities related to harvesting, such as prepa-
ration of crop cleaning, trimming, grading, drying.

105-106 Muri and Other Rice Products

Wheat 107-108 Wheat, atta 1111 Growing of food grain crops

110 Maida 1403 Activities establishing a crop, promoting its growth or pro-
tecting it from disease and insects. Transplantation of rice in
rice fields.

111 Suji, rawa 1404 Harvesting and activities related to harvesting, such as prepa-
ration of crop cleaning, trimming, grading, drying.

112-114 Bread, bakery, sewai, noodles,
other wheat products

Sugar 269 Sugar (sub-total) 1115 Growing of sugarcane or sugar beet

Meat &
Dairy

160 Milk: liquid (litre) 1407 Activities to promote propagation, growth and output of ani-
mals and to obtain

161 Baby food 1409 Other agricultural and animal service activities, n.e.c.

162 Milk: condensed/ powder 1211 Farming of cattle , sheep, goats, horses, asses, mules and hin-
nies; dairy farming

163 Curd 1212 Rearing of goats, production of milk

164 Ghee 1213 Rearing of sheep; production of shorn wool

165 Butter 1214 Rearing of horses, camels, mules and other.

166 Ice-cream 1221 Raising of pigs and swine

167 Other milk products 1222 Raising of poultry (including broiler) and other domesticated
birds; production of eggs and operation of poultry hatcheries

180 Eggs (no.) 1223 Raising of bees; production of honey

181 Fish, prawn 1224 Raising of silk worms; production of silk worm cocoons

182 Goat meat/mutton 1225 Farming of rabbits including angora rabbits

183 Beef/ buffalo meat 1229 Other animal farming; production of animal products n.e.c.

184 Pork 1500 Hunting, trapping and game propagation including related
service activities

185 Chicken 5001 Fishing on commercial basis in ocean, sea and coastal areas

186 Others: birds, crab, oyster,
tortoise, etc.

5002-
5005

Fishing, fish farming, gathering of marine materials, other
fishing activities

Other Food 115-122 Jowar, bajra, maize, barley,
small millets other cereal

1112 Growing of oilseeds including peanuts or soya beans

139 Cereal substitutes: tapioca,
jackfruit, etc.

1119 Growing of other crops, n.e.c.

159 Pulses & pulse products 1121 Growing of vegetables

179 Edible oil (sub-total) 1122 Growing of horticultural specialties including: seeds for flow-
ers, fruit or

229 Vegetables (sub-total) 1131 Growing of coffee or cocoa beans

249 Fruits (fresh, sub-total) 1132 Growing of tea or mate leaves including the activities of tea
factories associated

259 Fruits (dry, sub-total) 1133 Growing of edible nuts including coconuts

289 Spices (sub-total) 1134 Growing of fruit: citrus, tropical pome or stone fruit; small
fruit such as berries;

290-293 Tea and coffee 1135 Growing of spice crops including: spice leaves
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