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Abstract

We know since the works of Gehrlein and Fishburn (1980, 1981), Fishburn

(1981) and Saari (1987, 1988, 1990) that, the collective rankings of scoring rules

are not stable when some alternatives are dropped from the set of alternatives.

However, in the literature, attention has been mainly devoted to the relation-

ship between pairwise majority vote and scoring rules rankings. In this paper,

we focus on the relationships between four-candidate and three-candidate rank-

ings. More precisely, given a collective ranking over a set of four candidates,

we determine under the impartial culture condition, the probability of each of

the six possible rankings to occur when one candidate is dropped. As a con-

sequence, we derive from our computations, the likelihood of two paradoxes of

committee elections, the Leaving Member paradox (Staring, 1986) and of the

Prior Successor Paradox which occur when an elected candidate steps down

from a two-member committee.
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1 Introduction

One of the main objectives of the social choice theory is the aggregation of individual
preferences into a collective ranking that is the determination of a complete order
over the set of the alternatives or candidates. This objective can be achieved when
every voter gives points to each candidate in accordance with his preference order.
Hence, the candidate with the highest score will be ranked at the top and the one with
the lowest score will be at the bottom of the collective ranking. The Plurality rule,
the Antiplurality rule and the Borda rule are among others, some well known scoring
rules that can be used for a such objective. With the Plurality rule, a candidate's
score is the number of times he is top ranked in the individual rankings. With the
Antiplurality rule, a candidate's score is equal to the number of voters that do not
rank him at the bottom of their rankings. With m candidates, the Borda rule gives
m − j points to a candidate each time, he is ranked j-th in a voter's ranking. The
total number of points received by a candidate, de�nes his Borda's score.

Some questions that have been well addressed in the literature are the following
: given a set of candidates, how a collective ranking can be altered after one or
more candidates are removed from the competition? Is the new collective ranking
consistent with the former one? These questions can be tracked back to the Borda-
Condorcet debate. At the end of the 18th century, Borda (1781) and Condorcet
(1785) who were members of the Paris Royal Academy of Sciences, tried to propose
an alternative voting rule to the one that was in use in the academy (see McLean
and Urken (1995)). The Borda rule picks as the winner, the candidate with the
highest Borda's score. Condorcet (1785) criticized the Borda rule in that it can exist
a candidate that is preferred by more than half of the electorate to the Borda winner.
Condorcet (1785) proposed a rule based on pairwise comparisons1. According to this
rule, a candidate should be declared the winner if he beats all the other candidates in
pairwise majority; such a candidate is called the Condorcet winner. Nonetheless, the
Condorcet rule has a main drawback : it can lead to cycles2 in some circumstances.
Though the Borda-Condorcet debate3 about the choice of the best voting rule is still
alive, everyone agrees that they were the �rst authors who emphasized the fact that
scoring rules and pairwise comparisons are not always consistent.

The Borda-Condorcet debate can be envisaged in a broader picture : what are

1 See Young (1988) for a modern interpretation of Condorcet's rule.
2Let us take three candidates a, b and c in order to illustrate what is a cycle in a simple way. For

a given electorate, if a is majority preferred to b and b is majority preferred to c and c is majority
preferred to a, this describe a voting cycle with three candidates.

3Finally, the Borda rule was retained by the Academy.
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the relationships between the rankings on a set A of candidates and the rankings
on the subset B included in A for a given preference pro�le? Apart from classical
studies analyzing the relationships between pairwise voting and scoring rules (see
Dodgson (1876); Nanson (1882); Smith (1973); Fishburn and Gehrlein (1976)), the
�rst extension of these is due to Fishburn (1981) who showed that there always exist
a preference pro�le for which removing any candidate from A leads to the reversed
ranking on the remaining candidates. In a seminal paper Saari (1988) generalized
this result by studying simultaneously the ranking on all the subsets of A for a given
pro�le. He showed that, for most of the scoring rules (the Borda rule being one of the
few exceptions) anything can happen for some pro�les and no relationship prevails.
This result was further developed in Saari (1987, 1988, 1990, 1996).

This historical result could cast a doubt on the practical use of scoring rules.
What remains is to see whether this paradoxical results are just rare oddities or
betray more generalized behavior. In modern social choice theory, many works have
tried to analyze the relationships between pairwise and scoring rules. Among others,
we can mention the works of Gehrlein and Fishburn (1976), Gehrlein and Fishburn
(1980, 1981), Gehrlein et al. (1982), Fishburn (1981), Tataru and Merlin (1997), Van
Newenhizen (1992) and more recently, Cervone et al. (2005). Most of them prove
that given a scoring rule and a collective ranking, there is no reason to think that
the pairwise comparisons will always be consistent with this collective ranking.

However, this line of research barely analyzed anything but pairwise relationships.
In three-candidate elections, Gehrlein and Fishburn (1980, 1981) computed the limit
probabilities under the Impartial Culture (IC) condition (de�ned later) that, given
a scoring rule, the pairwise comparisons between candidates agree or are consistent
with the collective ranking. They showed that, the agreement is maximized by the
Borda rule and is minimized4 by the Plurality rule and the Antiplurality rule.

Only one reference dealt with the relationship between the four-candidate set
and the three-candidate subsets: Gehrlein and Fishburn (1980). They computed
the likelihood that a ranking on a three-candidate subset is lifted up to the four-
candidate subset under the IC condition. They concluded that, the probability of
agreement between pairwise comparisons and the collective ranking is maximized by
the Borda rule. In the same paper, they computed the mean limit probability that
the collective ranking on three candidates agree with the collective ranking on four

4Gehrlein and Fishburn (1980, 1981) showed that with three candidates a, b, c, given that the
collective ranking is abc, the limit probability to have a majority preferred to b (or b majority
preferred to c) is 85.3% for the Borda rule and 75.5% for the Plurality rule and the Antiplurality
rule; the limit probability to have a majority preferred to c is 96.9% for the Borda rule and 90.1%
for the Plurality rule and the Antiplurality rule.
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candidates. One drawback of their approach is that, they evaluated the likelihood
of the same ranking on {a, b, c, d} and {a, b, c} regardless of the position of d in the
four-candidate ranking; they only cared about the possibility of lifting up the initial
ranking on {a, b, c} to the superset.

Our objective in this paper will be to derive the probability of any ranking on the
three-candidate subset given that any candidate has been removed from the four-
candidate set5. In this paper, we enrich Gehrlein and Fishburn (1980)'s analysis 1)
by obtaining exact probabilities of consistency depending on the original position of
the removed candidate 2)by deriving in each case, the likelihood of all the possible
rankings on subsets. Our probability computations not only lead us to make an
hierarchy of the main scoring rules according to their stability; we also derive from
them, the likelihood of some electoral paradoxes for committee elections.

Assume that, when electing a committee of size g, this committee is made by the
candidates with the g greatest scores (the g top ranked candidates of the collective
ranking). The �rst paradox we deal with is the Prior Successor Paradox (PSP).
Since the elected committee is formed by the candidates with the g greatest scores,
we de�ne the Prior Successor as the candidate with the g+1-th best score. The PSP
occurs if after a member of the elected committee leaves, a new ballot (given the
subset of candidates) leads ceteris paribus6 to a committee containing all the g − 1
members of the previous committee without the Prior Successor. The other paradox
we de�ne and deal with is more severe than the PSP : the Leaving Member Paradox
(LMP) due to Staring (1986); it occurs when after a member of an elected committee
leaves, a new ballot, ceteris paribus, leads to a new committee without some members
of the previous ones; even worse, the two committees may be disjoint.

The rest of the paper is structured as follows : Section 2 is devoted to basic
notations and de�nitions. In Section 3, we motivate the paper by considering some
examples showing how the collective rankings over proper subsets of a set of alter-
natives can be consistent or not with the collective ranking of this set. In Section 4,
we evaluate this event in the four-alternatives case using the impartial culture condi-
tion. In Section 5, we provide the formal de�nitions of the PSP and the LMP and we
then derive their likelihood in four-candidate elections and two-member committees

5Notice that, in Gehrlein and Fishburn (1980, 1981), Fishburn (1981) and Saari (1987, 1988,
1990, 1996) as it will the case in this paper, when a candidate is removed, it will not be for strategic
or for manipulation purpose as in Tideman (1987) or Dutta et al. (2001). Removing a candidate is
strategic if the objective is to improve the rank of a certain candidate. Results on this issue have
been recently discovered by Lang et al. (2013). We are not going to say more about this point since
we are not concerned with the strategic aspect of the withdrawing of one or more candidates.

6This means that, voters keep their preferences unchanged on the rest of candidates no matter
who is the leaving candidate.
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as a consequence of our probability computations. Section 6 concludes. Details on
probability computations are provided in Appendices A and B (Section 7).

2 Notation and de�nitions

2.1 Preferences

Let N be the set of n voters (n ≥ 2) and A the set of m alternatives or candidates,
m ≥ 3. The binary relation R over A is a subset of the cartesian product A × A.
For a, b ∈ A, if (a, b) ∈ R, we write aRb to say that �a is at least good as b�. ¬aRb
is the negation of aRb. If we have aRb and ¬bRa, we will say that �a is better or
strictly preferred to b�. In this case, we write aPb with P the asymmetric component
of R. The symmetric component of R, I, is de�ned by aIb denoting an indi�erence
between a and b i.e aRb and bRa. The preference pro�le π = (P1, P2, ..., Pi, ..., Pn)
gives all the linear orders7 of all the n voters on A where Pi is the strict ranking
of a given voter i. When we consider the preference of voter i on B ⊂ A, we will
simply use the restriction of Pi to B. The set of all the preference pro�les of size n on
A is denoted by P(A)n. A voting situation ñ = (n1, n2, ..., nt, ..., nm!) indicates the
number of voters for each linear order such that

∑m!
t=1 nt = n. In the subsequent, we

simply write


a
b
c
d

 or abcd to say that a is strictly preferred to b, b strictly preferred

to c and c strictly preferred to d. Table 2.1 gives the labels of all the 24 types of
strict rankings with four candidates.

Table 2.1: Labels of preferences on A = {a, b, c, d}
n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

a a a a a a b b b b b b
b b c c d d a a c c d d
c d b d b c c d a d a c
d c d b c b d c d a c a

n13 n14 n15 n16 n17 n18 n19 n20 n21 n22 n23 n24

c c c c c c d d d d d d
a a b b d d a a b b c c
b d a d a b b c a c a b
d b d a b a c b c a b a

7A linear order is a binary relation that is transitive, complete and antisymmetric. The binary
relation R on A is transitive if for a, b, c ∈ A, if aRb and bRc then aRc. R is antisymmetric if for
all for a 6= b, aRb⇒ ¬bRa; if we have aRb and bRa, then a = b. R is complete if and only if for all
a, b ∈ A, we have aRb or bRa.
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When the number of voters who rank a before b is greater than that of those who
b before a, a is said majority preferred to b; we denote it by aM(π)b or simply aMb.

2.2 Scoring rules

A scoring rule is a voting system that gives points to candidates in accordance with
the position they occupy in voters rankings. The total number of points received by
a candidate de�nes his scores for the considered rule. The winner is the one with the
greatest score.

Let r(i, a, A) for short when the context is clear, be the rank of candidate a ∈ A
in voter i's ranking.

r(i, a, A) = ]{z ∈ B : zPia}+ 1

In a similar way we de�nes r(i, a, B) for a ∈ B ⊆ A.
We denote by w = (w1, w2, w3, ..., wj, ..., wm) the scoring vector associated to the

voting system such that w1 = 1 ≥ w2 ≥ ... ≥ wj ≥ ... ≥ wm = 0. The most famous
scoring rules are:

• The vector w such that w2 = ... = wm = 0 de�nes the simple Plurality rule:
voters only cast a vote for their top ranked candidate. For m = 4, the scoring
vector of the simple Plurality rule is wP = (1, 0, 0, 0).

• For w2 = ... = wm−1 = 1, we have the Antiplurality rule under which each voter
vote for all the candidates except his bottom ranked candidate; with m = 4,
the scoring vector of the Antiplurality rule is wAp = (1, 1, 1, 0).

• Withm candidates, the Borda rule gives m−j
m−1 points to a candidate each time he

is ranked j-th; then, the associated scoring vector is w = (1, m−2
m−1 , ...,

m−j
m−1 , ...,

1
m−1 , 0).

In the four-candidate case, the tally of the Borda rule is wBor = (1, 2
3
, 1
3
, 0).

• Under the Limited Voting, voters vote for exactly g candidates (0 < g < m)8.
For g = 1, the Limited Voting is equivalent to the Simple Plurality rule and to
the Antiplurality for g = m − 1. In this paper, as m = 4, we will take g = 2.
So, the associated tally is wLV = (1, 1, 0, 0).

• The two others rules we are going to deal with are the Plurality extension and
the Antiplurality extension both de�ned by Saari (1996). We will say more on
these rules in Section 3. Form = 4, the tally of the Plurality extension is wPe =
(1, 1

3
, 0, 0) and that of the Antiplurality extension rule is wApe = (1, 1, 2

3
, 0).

8For an overview on this voting system and those related to it, see Dummet (1984).
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Given the voting system w, for a candidate a ∈ A, his score is given by :

S(A,w, π, a) =
n∑
i=1

wr(i,a,A)

We denote by R(A,w, π) (R(A, π) for short) the collective ranking on A given
the pro�le π for the scoring vector w. For all B ⊆ A with |B| ≥ 2, we de�ne wB the
scoring vector of dimension |B| we use to rank alternatives of the subset B. As with
w, we have wB = (wB1 , w

B
2 , ..., w

B
]B) such that wB1 = 1 ≥ wB2 ≥ ... ≥ wB]B = 0. So, for

a given subset B, the preference Pi of voter i is now de�ned by its restriction to B.
Hence, given wB, for a candidate a ∈ B, his score is given by :

S(B,w, π, a) =
n∑
i=1

wBr(i,a,B)

We denote by R(π,B) the collective ranking on B when the pro�le π is restricted
to B. We can now de�ne a generalized scoring rule

ω = (wB
1

, wB
2

, . . . , wB
j

, . . . , wB
2m−(m−1)

)

as the collection of scoring vectors we use for each proper subset B of A.
In this paper, we will focus on |A| = 4 and |B| = 3. So, if A = {a, b, c, d} then

B ∈
{
{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}

}
. Assuming that the same scoring rule is

used on both the whole set and on the three candidate subsets, Table 2.2 gives for
each of the voting rules analyzed in this paper, the associated tallies.

Table 2.2: Voting rules and tallies

Tallies
Voting rules w wB

Plurality (1, 0, 0, 0) (1, 0, 0)

Saari's Plurality extension (1, 1
3
, 0, 0) (1, 0, 0)

Antiplurality (1, 1, 1, 0) (1, 1, 0)

Saari's Antiplurality extension (1, 1, 2
3
, 0) (1, 1, 0)

Borda (1, 2
3
, 1
3
, 0) (1, 1

2
, 0)

Limited Voting (1, 1, 0, 0) (1, 1, 0)
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3 The dictionary

When restricting the pro�le π from A to B the following events can occur :

• R(π,B) = R(π,A). The candidates in the collective ranking on B appear in
the same order as in the collective ranking on A. In a such case, we will say
that the scoring rule wB agree or is consistent with the scoring rule w.

• R(π,B) 6= R(π,A). The candidates in the collective ranking on B dot not
appear in the same order as in the collective ranking on A. In a such case,
we will say that the scoring rule wB is not consistent with the scoring rule w.
Even worse, the candidates in the collective ranking on B may appear in the
reversed order of that of the collective ranking on A, as shown in Example 1.

Example 1. For A = {a, b, c, d}, consider the following preference pro�le with 102
voters9.

12 6 6 3 6 12 6 7 6 12 14 6 6

a a a a b b b c c c d d d
b b d d c c d a a d a b c
c d b c a d c b d a b c a
d c c b d a a d b b c a b

For a given scoring vector w = (1, w2, w3, 0), we get,

S(A,w, π, a) = 27 + 27w2 + 24w3 S(A,w, π, b) = 24 + 24w2 + 27w3

S(A,w, π, c) = 25 + 24w2 + 27w3 S(A,w, π, d) = 26 + 27w2 + 24w3

Since w2 ≥ w3, it can be easily checked that R(π,A) = adcb.
Suppose that b is dropped. Using the scoring vector wB = (1, wB2 , 0) on B =

{a, c, d}, we have

S(B,wB, π, a) = 27+33wB2 , S(B,wB, π, c) = 43+30wB2 , S(B,wB, π, c) = 33+39wB2

Since R(π,B) = cda for wB = 0 and wB = 1, it comes that R(π,B) = cda for all
wB.

So, with this preference pro�le, for every couple (w,wB) of scoring vectors, given
that R(π,A) = adcb, if b is removed, this lead to a complete reversal ranking on the
remaining candidates

9As we take 102 voters, this does not mean that with less than 102 voters there is no the
inconsistency. The ready is free to build example for his own.
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All in all, what kind of consistency and inconsistency can appear for a given
generalized scoring rule ω? Saari studied extensively this issue in a series of seminal
papers (Saari (1987, 1988, 1990, 1996)).

Consider P(A)∞ = ∪∞n=1P(A)n, the set of the possible preference pro�les over
A, for any population size. Let κ = 2m − (m − 1). For B ⊆ A, a voting rule fB

associates to each pro�le in P(A)∞ a collective ranking in R(B) the set of all the
collective rankings on B. A generalized voting rule Φm is a list of voting rules, one
for each subset:

Φm = (fB
1

, fB
2

, . . . fB
κ

).

Hence, for each pro�le π ∈ P(A)∞, we obtain κ rankings, one for each subset:

Φm : P(A)∞ → R(B1)×R(B2)× . . .R(Bκ) = Um

π → (R(π,B1), R(π,B2), . . . , R(π,Bm)) = µ

In Saari's terminology, the result of a generalized voting rule for a given pro�le π
and for each subset is called a word µ, and Um is the universal domain, the set of all
possible entries. The set of all achievable words for a given Φm as we enumerate the
set of possible preferences is then called the Dictionary of the voting rule:

D(Φm) = {µ ∈ Um : Φm(π) = µ, π ∈ P (A)∞}

Let us denote by Borm the generalized scoring rule that uses the Borda count
on each subset. Similarly, we de�ne the generalized version of the simple Plurality
rule (Pm) and the Antiplurality rule (Apm). More generally, Fm

ω is the generalized
scoring rule using the family of scoring vectors in ω. The �rst Theorem establishes
the superiority of the Borda count among the class of generalized scoring rules.

Theorem 1. (Saari, 1988) Consider a generalized scoring rule Fm
ω , di�erent from

the Borda count. Hence:

• For m = 3, D(Borm) ⊂ D(Fm
ω ) = Um.

• For m ≥ 4, D(Borm) ⊂ D(Fm
ω ) ⊆ D(Pm) = D(Apm) = Um.

The interpretation of the result is clear: if an inconsistency occurs for some pro�le
with the Borda count, it will also occur (for the same pro�le or a di�erent one) for
any other generalized scoring rule. Moreover, the Borda count uniquely minimizes
the number of possible words in this class of voting rules10. Though Borda can be

10However, this is not the case if we seek for generalized voting rules in other families. By
nature, dictatorship is perfectly consistent. More interestingly, Saari and Merlin (1996) proved that
for the Copeland rule Copm, which ranks the candidates on their number of pairwise victories,
D(Copm) ⊂ D(Borm).
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viewed as the optimal scoring rule, it is not free from severe paradoxes such as the
reversal paradox displayed in Example 1. What kind of relationships can we expect
when we use the Borda count. The answer is the generalization of a well know results
in social choice literature : The Condorcet winner (i.e the candidate who is able
to defeat any other opponent in pairwise comparison) is never ranked last by the
Borda count and the Condorcet loser (i.e the candidate who is defeated by any other
alternative) is never ranked �rst by the Borda count11.

Theorem 2. (Saari, 1990) Assume that candidate a is �rst (resp. last) ranked in all
the subsets B of size k. Hence, he cannot be ranked last (resp. �rst) in the supersets
of size l ≥ k.

Furthermore, he describes in the four candidate case, for which voting rules similar
conclusion can be reached.

Theorem 3. Saari (1996) Consider the scoring vector w = (w1, w2, w3, w4) to be
used in A and the scoring vector wB = (wB1 , w

B
2 , w

B
3 ) to be used in all the subsets B

of three candidates. The same relationships as in Theorem 2 exist between the three
candidate and the four candidate rankings if and only if:

w1 = 3wB1 , w2 = wB1 + 2wB2 , w3 = 2wB2

First, it is immediate that the natural extension of wB = (1, 1
2
, 0) is w = (3, 2, 1, 0),

that is, the non normalized version of the Borda count. Hence, Borda maps into
Borda. It is then easy to check that the natural extension of the plurality rule
wB = (1, 0, 0) is the vector w = (3, 1, 0, 0) or wPe = (1, 1

3
, 0, 0) in its normalized

version. Similarly, wB = (1, 1, 0) maps into wApe = (1, 1, 2
3
, 0). One can also notice

that it is impossible to �nd a solution to the system:
1 = 3wB1
1 = wB1 + 2wB2
0 = 2wB2

Hence, no relationship at all exist between wLV and wB = (wB1 , w
B
2 , w

B
3 ).

Theorems 1 to 3 establish the superiority of the Borda count in the class of scoring
rule when one wishes to minimizes the types of inconsistencies we can observe across
subsets. However, they do not tell us whether the likelihood of paradoxes are rare
oddities or not, and whether the Borda count also minimizes the probability of

11This results can be tracked back to Nanson (1882). Modern proofs are proposed by Smith
(1973) and Fishburn and Gehrlein (1976).
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the di�erent paradoxes. The vast literature on the relationships between pairwise
majority and scoring rules gives a positive answer to this last issue (See Gehrlein and
Lepelley (2010) for a survey). For almost all the a priori probability distribution one
can imagine on the set of preferences pro�les12 the Borda count is the most likely to
lift up the results on pairwise comparisons to supersets13.

By estimating the likelihood of consistent and inconsistent rankings on four can-
didate and three candidate subsets, the current paper wishes to examine wether the
Borda count will still prevails. Theorem 3 also suggest that new rules, like the plu-
rality extension and the antiplurality extensions, could fare well. In order to answer
all these questions, we need to set an a priori assumption on the likelihood of the dif-
ferent pro�le. In a �rst step, we chose the most common one, namely, the Impartial
Culture assumption.

4 Probabilities of consistency with four alternatives

4.1 A probabilistic model: The impartial culture

One of the most used assumptions in the social choice literature when computing
the likelihood of given events is the Impartial Culture (IC). Under IC, it is assumed
that, each voter chooses her preference following a uniform probability distribution.
It gives probability 1

m!
to each ranking of being chosen independently. The likelihood

of a given voting situation ñ = (n1, n2, ..., nt, ..., nm!) is

Prob(ñ = (n1, n2, ..., nt, ..., nm!)) =
n!∏m!
i=1 ni!

× (m!)−n

For more details about the IC and other probabilistic assumptions, see among
others Gehrlein and Fishburn (1976), Berg and Lepelley (1994), Gehrlein and Lep-
elley (2010).

12We here only consider the probability models that are neutral, i.e, that treat equally all alter-
natives and all the rankings

13A few exception has been reported concerning the selection of the Condorcet winner in the
three candidate elections. Under an assumption called the Impartial Anonymous Culture, Cervone
et al. (2005) showed that though the Borda count is close to be optimal, the real optimum is
obtained with v = (1, 0.37225, 0) as n goes to in�nity. The optimality of the Borda count can also
be contested by Approval Voting in some speci�c scenarios when one considers indi�erent voters,
as in Diss et al. (2010).
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4.2 The consistency probabilities : Gehrlein and Fishburn's

results

Using the IC assumption, Gehrlein and Fishburn (1980) have computed in four-
candidate elections 1)-the limit probability that the pairwise comparisons are consis-
tent with the collective ranking and 2)-the mean limit probability that the collective
ranking on three candidates agree with the collective ranking on four candidates.

Consider A = {a, b, c, d} a set of four alternatives and B a proper subset of A
with two alternatives such that B ∈ {{a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c, d}}. Let
us denote by q((w,wB), xy) (x, y ∈ A, x 6= y) the limit probability under IC that the
pairwise comparison between x and y is consistent with how x and y appear in the
collective ranking on A. So, if abcd is the collective ranking, q((w,wB), ab) will be
the probability that a is majority preferred to b or the probability that a still ranked
before b when the two other candidates are removed. Gehrlein and Fishburn (1980)
provided the expression of each of the q((w,wB), xy). We are not going to recall
these expressions here. They showed that

q((w,wB), ab) = q((w,wB), cd) and q((w,wB), ac) = q((w,wB), bd) (4.1)

Also, they showed that each q((w,wB), xy) is maximized by the Borda rule and
minimized by the Plurality rule and the Antiplurality rule. In Table 4.1, we report
their results for the Borda rule, the Plurality rule and the Antiplurality rule. Also,
we use their expressions of q((w,wB), xy) to derive the results for the Limited Voting,
the Plurality extension and the Antiplurality extension.

Table 4.1: Scoring rules and consistency probabilities over two-alternatives subsets

q((w,wB), ab) q((w,wB), ac) q((w,wB), ad) q((w,wB), bc)

Borda 0.799847 0.924842 0.980402 0.767058

Plurality
0.680513 0.796887 0.893273 0.651925

Antiplurality

Limited Voting 0.731399 0.859501 0.943660 0.699058

Plurality extended
0.741092 0.870079 0.950731 0.708349

Antiplurality extended

Apart from con�rming the optimality of the Borda rule, it comes from Table 4.1
that, the extended rules that perform better than the Limited voting which is in
turn, better than the Plurality rule and the Antiplurality rule.
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In the four-candidate case, Gehrlein and Fishburn (1980) computed14 the limit
probability given the collective ranking on A = {a, b, c, d} that the new collective
ranking between a, b and c is consistent with the former one after alternative d is
removed no matter his position in that ranking15. They showed that this probability
is maximized by the Borda rule and minimized by the two Plurality-Antiplurality
score vectors combination i.e w = (1, 0, 0, 0) and wB = (1, 1, 0).

In the four-candidate case, Gehrlein and Fishburn (1980)'s results are somewhat
limited in scope since they leave some questions unanswered. Is the agreement prob-
ability the same when the removed candidate was �rst, second, third or last in the
original ranking? When a four-alternative set is restricted to a three-alternative
proper subset, what is the likelihood of di�erent rankings to occur? The answers
follow.

4.3 Consistency probabilities : generalized results for subsets

of three alternatives

This section completes Gehrlein and Fishburn (1980)'s results by computing in four-
candidate elections, the limit probability (under IC) of a given ranking to occur after
one candidate is removed depending on the position of the removed candidate in the
original collective ranking.

With A = {a, b, c, d}, to take all the possible cases, we will consider the following
collective rankings : abcd, abdc, adbc and dabc; then we suppose that d is removed
and we compute the likelihood of each of the following ranking to occur : abc, acb,
bac, bca, cab, cba.

The voting rules we are concerned with are those presented in Table 2.2. With
A = {a, b, c, d}, we denote by P IC

∞ ((w,wB), abc/abcd) the limit probability under IC,
that the ranking abc occurs when d the last ranked candidate of the collective ranking
on A = {a, b, c, d} is removed given the couple of tallies (w,wB). In the same way
we de�ne P IC

∞ ((w,wB), abc/abdc), P IC
∞ ((w,wB), abc/adbc), P IC

∞ ((w,wB), abc/dabc),
so and so. One can notice that, P IC

∞ ((w,wB), abc/abcd) is the probability that the
three-candidate's collective ranking is consistent with the four-candidate's collective
ranking when d is removed; while P IC

∞ ((w,wB), cba/abcd) is the probability that the
three-candidate's collective ranking is totaly the reverse of that with four candidates
after d is removed (as shown in Example 1).

14They provided the expression of the limit probability that we are not going to report here due
to space constraints.

15This means that the collective ranking on A = {a, b, c, d} could be abcd or abdc or adbc or dabc.
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Due to space constraints, were are not going to report all the expressions of the
probabilities formulas and their proofs here. But, in Section 7, we present one case in
detail in Appendix A; in Appendix B we provide a MAPLE-sheet of our computation
program. Tables 4.2 to 4.5 report the consistency probabilities values for each the
scoring rules we analyzed in this paper.

Table 4.2: Consistency probabilities over subsets for the Borda rule on A = {a, b, c, d}

collective rankings abc acb bac bca cab cba

abcd 0.719518 0.138512 0.111617 0.011626 0.011888 0.006836
abdc 0.840425 0.028084 0.127008 0.002214 0.001408 0.000858
adbc 0.840425 0.127008 0.028084 0.001408 0.002214 0.000858
dabc 0.719518 0.111617 0.138512 0.011888 0.011626 0.006836

mean 0.779971 0.101305 0.101305 0.006784 0.006784 0.003847

Before going further, let us mention that, in each of the Tables 4.2 to 4.5, the
�rst mean values computed (second column) is exactly the probability obtained by
Gehrlein and Fishburn (1980); this is the mean probability that the relative ranking
between three candidates is preserved when we move from a four-candidate set to its
proper three-candidate subset. Our results complete those of Gehrlein and Fishburn
(1980) and o�er a broader outlook.

According to Tables 4.2 to 4.5, among the six scoring rules analyzed here, it
comes that given a collective ranking on a four-candidate set, the Borda rule is the
most consistent with the former ranking when one candidate is removed. In this,
the Borda rule is followed by the Plurality extension and the Antiplurality extension,
then comes the Plurality rule and the Antiplurality rule. The Limited Voting appears

Table 4.3: Consistency probabilities over subsets for the Plurality rule and the An-
tiplurality rule on A = {a, b, c, d}

collective rankings abc acb bac bca cab cba

abcd 0.516969 0.203037 0.171531 0.040395 0.042127 0.025939
abdc 0.661087 0.089474 0.213197 0.017253 0.011572 0.007415
adbc 0.661087 0.213197 0.089474 0.011572 0.017253 0.007415
dabc 0.516969 0.171531 0.203037 0.042127 0.040395 0.025939

mean 0.589028 0.169309 0.169309 0.027836 0.027836 0.016677
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Table 4.4: Consistency probabilities over subsets for the Saari's Plurality extension
rule and the Saari's Antiplurality extension rule on A = {a, b, c, d}

collective rankings abc acb bac bca cab cba

abcd 0.594543 0.183112 0.151478 0.026725 0.027667 0.016475
abdc 0.737973 0.061716 0.182233 0.008626 0.005633 0.003819
adbc 0.737973 0.182233 0.061716 0.005633 0.008626 0.003819
dabc 0.594543 0.151478 0.183112 0.027667 0.026725 0.016475

mean 0.666258 0.144635 0.144635 0.017163 0.017163 0.010147

Table 4.5: Consistency probabilities over subsets for the Limited Voting rule on
A = {a, b, c, d}

collective rankings abc acb bac bca cab cba

abcd 0.412089 0.217588 0.190647 0.065521 0.068797 0.045355
abdc 0.537710 0.132448 0.243258 0.039356 0.027916 0.018909
adbc 0.537710 0.243258 0.132448 0.027916 0.039356 0.018909
dabc 0.412089 0.190647 0.217588 0.068797 0.065521 0.045355

mean 0.474900 0.195985 0.195985 0.050397 0.050397 0.032132
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Table 4.6: Limit probability for a to remain �rst

Plurality Extension Plurality
collective rankings Borda Antiplurality Extension Antiplurality Limited Voting

abcd 0.858030 0.777655 0.720006 0.629677

abdc 0.868509 0.799689 0.750561 0.670158

adbc 0.967433 0.920206 0.874284 0.780968

mean 0.897990 0.832517 0.781617 0.693601

to perform the worst. We also learn that for each of our six scoring rules, given a
collective ranking on a four-candidate set, when one candidate is removed, it is more
di�cult under the Borda rule than under the �ve other voting rules to end with a
total reversal ranking (or with a ranking swapping candidates) on the three-candidate
set; this is more likely under the Limited Voting.

Also, we learn that, given a collective ranking, when a candidate is removed,
it becomes di�cult (for all of the six rules analyzed) to end with a new collective
ranking in which two candidates are swapped as the gap between them increases
comparatively to the original ranking. From Tables 4.2 to 4.5, we deduce for each
of our scoring rules, the propensities of a top ranked candidate to remain �rst (see
Table 4.6) or to become last (see 4.7) after a given candidate is removed.

According to Tables 4.6 and 4.7, for each of our scoring rules, when a candidate
(except the top ranked one) is removed, it is more likely for a top ranked candidate
to remain �rst (on average, 89.79% for the Borda rule, 83.25% for the extension rule,
78.16% for the Plurality rule and the Plurality and 69.36% for the Limited Voting)
while it is very hard for this candidate to become last with the Borda rule (on average
0.79%; 2.16% for the extension rule, 3.67% for the Plurality rule and the Plurality
and 7.01% for the Limited Voting). Also, for each of our voting rules, as candidate
a and d are closed, it is very probable (resp. di�cult) for a to remain �rst (resp. to
become last) after d is removed.

We have learnt from Table 4.1 that the pairwise comparisons are more consistent
with the collective ranking under the Limited Voting than under the Plurality and
the Antiplurality. When considering the proper subsets of three candidates, we have
the reverse. So, we can expect that, with a given a set of candidates, when studying
the consistency between the collective ranking on this set and what we have on its
proper subsets, the hierarchy among the scoring rules may not be the same as the
size of the subsets vary.
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Table 4.7: Limit probability for a to become last

Plurality Extension Plurality
collective rankings Borda Antiplurality Extension Antiplurality Limited Voting

abcd 0.018462 0.043200 0.066334 0.110876

abdc 0.003072 0.012445 0.024668 0.052650

adbc 0.002266 0.009452 0.018987 0.046825

mean 0.007933 0.021699 0.036663 0.070117

According to probabilities displayed in Tables 4.2 to 4.5, we can state the following
relationships between probabilities since they are valid16 for all the scoring rules
de�ned in Table 2.2.

Consider A = {a, b, c, d} and each of the tallies (w,wB) of the voting rules de�ned
in Table 2.2,

• The limit probability that the three-candidate's collective ranking is consistent
with the four-candidate's collective ranking when d is removed is as follows

P IC
∞ ((w,wB), abc/abcd) = P IC

∞ ((w,wB), abc/dabc) (4.2)

P IC
∞ ((w,wB), abc/abdc) = P IC

∞ ((w,wB), abc/adbc) (4.3)

• The limit probability that the three-candidate's collective ranking is totally the
reverse of that with four candidates after d is removed is as follows

P IC
∞ ((w,wB), cba/abcd) = P IC

∞ ((w,wB), cba/dabc) (4.4)

P IC
∞ ((w,wB), cba/abdc) = P IC

∞ ((w,wB), cba/adbc) (4.5)

• Also, it comes from Tables 4.2 to 4.5 that for (φ, τ) = (acb, bac) or (cab, bca),

P IC
∞ ((w,wB), φ/abcd) = P IC

∞ ((w,wB), τ/dabc) (4.6)

P IC
∞ ((w,wB), φ/abdc) = P IC

∞ ((w,wB), τ/adbc) (4.7)

P IC
∞ ((w,wB), φ/adbc) = P IC

∞ ((w,wB), τ/abdc) (4.8)

P IC
∞ ((w,wB), φ/dabc) = P IC

∞ ((w,wB), τ/abcd) (4.9)

16At this stage of the analysis, all the relationships stated remain as conjectures for all the
others scoring apart of those explored in this paper. So, we need to explore all the possible vector
combinations w and wB in order to generalize these relationships. This stills a challenge.
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5 Evaluating the likelihood of two paradoxes of com-

mittees elections

As already said, our probabilities complete Gehrlein and Fishburn (1980)'s results
and give a complete picture on the consistency of collective rankings and those on
subsets of alternatives. In this section, we will show how we can exploit the ex-
haustibility of our results. More particularly, we will focus on the paradoxes that
can occur when one wishes to select a committee of two out of four candidates.

5.1 Electing committees

Electoral laws and constitutions of many democratic organizations and countries
stipulate that, when electing a committee or a group of representatives (a parliament,
a board, etc.), every elected candidate must have at least one substitute. A substitute
is supposed to take the place of the elected candidate if for various reasons, he comes
to leave. In contrast, there are some organizations that elect boards without provision
of substitutes: for some of them, nothing is said on what will be done if one elected
member decided to leave; for others, a recourse to new (partial) elections is required
in such a case.

Suppose that a ballot with m candidates (at least three) leads to a committee
made of the g candidates with the greatest scores (g at least equal to two) and that
there is no provision of substitutes for any elected member of the committee. In
such a case, if an elected candidate decides to leave, there are three possible ways
to �ll the empty chair ceteris paribus17 : Rule 1 (R1) simply nominate the candidate
ranked g+1-th in the original ballot; Rule 2 (R2) take a new ballot on the remaining
m− 1 candidates and pick the g greatest scores; Rule 3 (R3) take a partial ballot on
the others m− g non elected candidates and take the one who scores the best. It is
clear that rule R1 is the natural way to replace the leaving candidate. Nonetheless,
the di�erent rules can lead to di�erent committees. How often?

In order to answer, we de�ne and analyze the discrepancies between the Rule 1
and the two others possible ways to �ll an empty chair.

5.2 Prior Successor Paradox

Since we have supposed that the elected committee is formed by the candidates with
the g greatest scores (in particular with scoring rules), we de�ne the Prior Successor

17This means that, voters keep their preferences unchanged on the rest of candidates no matter
who leaves.
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as the candidate with the g+1-th best scores.

De�nition 1. (Prior Successor) Let m ≥ 3 and 1 ≤ g ≤ m−1 and consider a given
scoring rule. For C∗ ∈ Cg, a candidate a is called the Prior Successor if a /∈ C∗ and
candidate a is the one with the g + 1-th greatest score.

The Prior Successor Paradox (PSP) occurs if after a member of the elected com-
mittee leaves, a new ballot (given the subset of candidates) leads to a committee
containing all the g − 1 members of the previous committee without the Prior Suc-
cessor.

De�nition 2. (Prior Successor Paradox ) Let m ≥ 3, 1 ≤ g ≤ m− 1 and an elected
committee C∗ such that candidate a is the Prior Successor (a /∈ C∗). The Prior
Successor Paradox occurs if when a candidate d ∈ C∗ leaves, we have a /∈ Ĉ∗ and
C∗ \ {d} ⊂ Ĉ∗.

Thus, the PSP can occur when one chooses not to just nominate the prior succes-
sor as recommended by rule R1. If a new ballot is taken (Rule R2) when an elected
candidate leaves, we denote by P IC∞

PSPj
(w,wB) the limit probability under IC of the

PSP given that the leaving candidate is the one who was ranked j-th (j ≤ g) in the
collective ranking. This is also the limit probability that the new elected committee
di�ers from that recommended by rule R1. Given that the collective ranking is dabc
and that the two-member committee is (a, d), if candidate d leaves, the PSP1(w,w

B)
will occur after a new ballot if the new elected two-member committee is (a, c) i.e
the new collective ranking is acb or cab. So,

P IC∞
PSP1

(w,wB) = P IC
∞ ((w,wB), acb/dabc) + P IC

∞ ((w,wB), cab/dabc) (5.1)

If candidate a leaves, the PSP2 will occur after a new ballot if the new elected
two-member committee is (d, c) i.e the new collective ranking is dcb or cdb. So,

P IC∞
PSP2

(w,wB) = P IC
∞ ((w,wB), dcb/dabc) + P IC

∞ ((w,wB), cdb/dabc)

= P IC
∞ ((w,wB), acb/adbc) + P IC

∞ ((w,wB), cab/adbc)

(5.2)

For four-candidate elections and two-member committees, Table 5.1 gives the val-
ues of P IC∞

PSP1
(w,wB) (and that of P IC∞

PSP2
(w,wB)) which is the probability of the PSP

when the leaving candidate is the one with the highest (resp. second best) score in
the elected two-member committee. According to these probabilities, among the six
voting rules analyzed her, the Limited voting appears to be the most vulnerable to
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Table 5.1: Likelihood of the PSP

New ballot Partial ballot
PSP

P IC∞
PSPP IC∞

PSP1
P IC∞
PSP2

Borda 0.123243 0.129222 0.200153

Plurality
0.211926 0.230450 0.319487

Antiplurality

Limited Voting 0.256168 0.282614 0.268601

Plurality extended
0.178203 0.190859 0.258908

Antiplurality extended

both the P IC∞
PSP1

and the P IC∞
PSP2

with respectively 25.62% and 28.26%. It is followed in
this by the Plurality and the Antiplurality rule (21.19% and 23.04%) and by the ex-
tension rules proposed by Saari (17.82% and 19.08%). The Borda rule exhibits these
paradoxes the less with respectively 12.32% and 12.92%. Also, for each of these six
scoring rules, the P IC∞

PSP1
is less likely than the P IC∞

PSP2
. Thus, in four candidate-election

and for two-member committees, the PSP is less likely to occur if the candidate with
the highest score in the committee leaves.

Notice that our probabilities do not allow us to derive the probability of the PSP
no matter the rank of the leaving candidate. Assume for A = {a, b, c, d} that the
elected committee is {a, b}; nothing tell us that the PSP only occurs when a leaves
and not when b leaves and vice-versa. So, we need more than what are displayed in
our tables : the joint probabilities18.

What do we have in case of a partial ballot (Rule R3)? In four candidate and
two-member committee, given that the collective ranking is abcd and that the two-
member committee is (a, b), the PSP will occur with a partial ballot after a member
of the elected committee leaves if and only if candidate c who is the Prior Successor is
beaten in pairwise majority by candidate d. So, probability P IC∞

PSP
(w,wB) of the PSP

in this case is the probability that the pairwise majority between the two last ranked
candidates is not consistent with the collective ranking on the four candidates. It
comes that, P IC∞

PSP
(w,wB) is the complementary of the results obtained by Gehrlein

and Fishburn (1980) (see Table 4.1) on the consistency between pairwise majority
and the collective ranking in four-candidate elections So, with abcd as the collective

18We admit that, with our computation techniques we are not yet able to get these joint proba-
bilities.
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ranking,

P IC∞
PSP

(w,wB) = 1− q((w,wB), cd) (5.3)

The last column of Table 5.1 gives the values of P IC∞
PSP

(w,wB) for each of our
analyzed scoring rules. According to these values, it is the Plurality rule and the
Antiplurality rule that are the most likely with 31.95% to produces the PSP in case
of a partial ballot. They are followed by the Limited Voting (26.86%), the Extension
rules (25.89%) and the Borda rule (20.01%).

We also deal with another paradox of committees that is more stronger than the
PSP : the Leaving Member Paradox (LMP).

5.3 The Leaving Member Paradox

According to Staring (1986), when voters vote for exactly g candidates in order to
elect a board of size19 g , if a new ballot is taken, ceteris paribus, after an elected
candidate leaves (this is consistent with (R2)), we can end with a committee that does
not contain one or many members of the original one even worse, the two committees
may be disjoint : this is the Leaving Member Paradox (LMP)20. The formal de�nition
follows.

Suppose that we want to elect a committee of g members (2 ≤ g < m − 1) and
that the elected candidates are those with the g greatest scores. We denote by Cg

the set of all possible committees of size g, by C∗ ∈ Cg the elected committee. If a
candidate leaves C∗, we denote by Ĉ∗ ∈ Cg \ C∗ the new elected committee after a
ballot has be taken to replace this leaving candidate.

De�nition 3. (Leaving Member Paradox ) For m ≥ 4 and 2 ≤ g ≤ m− 1, consider a
given scoring rule. The Leaving Member Paradox occurs if for C∗, Ĉ∗ ∈ Cg, ∃a ∈ C∗
and a leaving member d ∈ C∗ \ {a} such that a /∈ Ĉ∗.

Since we have taken 2 ≤ g ≤ m− 1, it is clear that with three candidates, we can
only elect a committee of size two; so, if a member leaves, there is no reason for the
Leaving Member Paradox to happen. Notice that the LMP is not de�ned with less
than four candidates.

19This de�nes the Limited Voting.
20The other paradox described by Staring (1986) is the Increasing Committee Size Paradox which

occurs if an elected member of a committee of size g is no more elected for a committee of size g+1;
even worse, both committees may be totally disjoint. For more about the Increasing Committee

Size Paradox, see Staring (1986), Mitchell and Trumbull (1992). We only concern here with the
LMP which is de�ned as it follows.
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Recall that the LMP follows the recommendation of rule R2; so by following the
recommendation of rule R2, we can end with a committee totaly di�erent from what
we will have by rule R1. If a new ballot is taken when an elected candidate leaves,
we denote by P IC∞

LMPj
(w,wB) the limit probability under IC of the LMP given that the

leaving candidate is the one who was ranked j-th (j ≤ g) in the collective ranking.
Given that the collective ranking is dabc and that the two-member committee is
(a, d), if candidate d leaves, the LMP1 will occur if the new elected two-member
committee is (b, c) i.e the new collective ranking is bca or cba. So,

P IC∞
LMP1

(w,wB) = P IC
∞ ((w,wB), bca/dabc) + P∞IC((w,wB), cba/dabc) (5.4)

If candidate a leaves, the LMP2 will occur if the new elected two-member committee
is (d, c) i.e the new collective ranking is bcd or cbd. So,

P IC∞
LMP2

(w,wB) = P IC
∞ ((w,wB), bcd/dabc) + P IC

∞ ((w,wB), cbd/dabc)

= P IC
∞ ((w,wB), bca/adbc) + P IC

∞ ((w,wB), cba/adbc)

(5.5)

Table 5.2: Likelihood of the LMP1 and the LMP2

New ballot
LMP

P IC∞
LMP1

P IC∞
LMP2

Borda 0.018724 0.002266

Plurality
0.068076 0.018987

Antiplurality

Limited Voting 0.114152 0.046825

Plurality extended
0.044142 0.009452

Antiplurality extended

For four-candidate elections and two-member committees, Table 5.2 gives the
values of P IC∞

LMP1
(w,wB) (and that of P IC∞

LMP2
(w,wB)) which is the probability of the

LMP when the leaving candidate is the one with the highest ( resp. second best) score
in the elected two-member committee. According to these probabilities, among the
six voting rules analyzed here, the Limited voting appears to be the most vulnerable
to both the P IC

LMP1
and the P IC

LMP2
with respectively 11.41% and 4.68%. It is followed

in this by the Plurality and the Antiplurality rule (6.81% and 1.89%) and by the
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extension rules proposed by Saari (4.41% and 0.95%). The Borda rule exhibits these
paradoxes the less with respectively 1.87% and 0.23%. Also, for each of these six
scoring rules, the P IC∞

LMP1
is more likely than the P IC

LMP2
. Thus, in four candidate-

election and for two-member committees, the LMP is more likely to occur if the
candidate with the highest score in the committee leaves.

For the same reasons we gave for the PSP, our probabilities do not allow us to
derive the probability of the LMP no matter the ranking of the leaving candidate.

6 Conclusion

The main objective of this paper was to revisit a classical theme in Social Choice
Theory, the stability of the collective ranking as candidates leave or enter the choice
set. We focussed on the analysis of the discrepancies between the rankings on four-
candidate sets and three-candidate sets obtained by scoring rules, by deriving the
exact values of the probabilities of all the possible scenarios under the Impartial
Culture assumption. We provided results not only for classical rules, such as the
Borda count, the simple Plurality rule, and the Antiplurality rule, but also for less
known rules, such as the Limited Voting, the Plurality extension and the Antiplu-
rality extension. Our results complete previous analysis by Gehrlein and Fishburn
(1980) on the consistency of the rankings obtained by scoring rules on subsets of
candidates. As a by product, we could easily estimate from our tables the likelihood
of some paradoxical events for the election of a two-member committee from a four
candidate menu. We showed that the di�erent ways to �ll an empty set after an
elected member leaves (by picking the prior successor, organizing a partial ballot or
starting the whole electoral process again) could lead to very di�erent choices quite
frequently for some rules.

Our study con�rms the superiority of the Borda count within the class of scor-
ing rules under the Impartial Culture assumption when it comes to minimize the
likelihood of discrepancies across subsets of candidates. This fact was already well
documented for pairwise majorities; we now extend this result for relationships be-
tween four candidates and three candidate rankings. Moving up to four candidates
also permits us to study rules for which only few things are known, like Limited
Voting. It turns out that it performs quite badly. In particular, it is unable to keep
a ranking in a three candidate subset in more than 50% of the cases (see Table 4.5)
while the other �ve scoring rules we study do better, up to 78% for the Borda count.
However, we also observe that obtaining a clear cut ranking of the scoring rules on
their propensity to respect orderings is not possible: the Limited Voting does better
than Plurality and Antiplurality when it comes to satisfy pairwise ranking.
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The four-candidate case also enabled us to study Saari's Plurality extension and
Antiplurality extension. Though they cannot beat the Borda Count, they clearly
perform better than Plurality, Antiplurality and Limited Voting, not only when
comparing the three candidate ranking with the four-candidate ranking, but also
on the basis on pairwise comparisons. Hence using the pair (w = (1, 1

3
, 0, 0), wB =

(1, 0, 0) could be viewed as an alternative to classical simple Plurality when one
wishes to clearly give more points to its �rst choice.

When it comes to the selection of a committee, our study compared three ways
to �ll the empty seat : selecting the prior successor, running a partial election, or
starting the electoral process all over again. Though �lling the empty seat with the
successor is the easiest and costliest method, the �gures we observe for the Prior
Successor Paradox tell us it may lead us to a wrong choice quite frequently. This
paradox is especially large if we use the Plurality rule or the Antiplurality rule: the
prior successor could be defeated in almost 32% of the case in a partial ballot, and
in more than 20% of the case with a full slate election. This �gures suggests that,
in many cases, it would be a better options to vote again in order to stick to the
wishes of the voters. The values we derived for the Leaving Member Paradox teach
us that, electing a completely new committee after the departure of a seating member
remains a rare event.

At this stage, one may wonder why we did not estimate the discrepancies between
the partial ballot method and the full ballot method. To obtain these �gures, one
needs to estimate the likelihoods of words on, let's say, {a, b, c, d}, {a, b, c} and {b, c}.
To describe a precise word on these subsets, one needs at least six inequalities.
Unfortunately, there does not exist general techniques that enable us to derive the
exact formulas of the likelihood of such an event under IC. For this reason too, we had
to distinguish between LMP1 and LMP2, as the we cannot evaluate the likelihood
of the joint event. For the same reason, we had to distinguish between PSP1 and
PSP2 with the new ballot approach. At the moment, one should rely on Monte-Carlo
simulations to obtain an estimation of the likelihood of these events.

Hence, though we had a glance at the relationships between the rankings on size
three and size four subsets, and at the probabilities of some related events, there
still many question to analyze when we consider more alternatives. As said before,
deriving precise formulas for the likelihood of events described by more than �ve
inequalities is almost impossible. Though one may conjecture that the Borda count
will minimize the likelihood of inconsistencies on subsets for any number of candi-
dates, a precise proof of this statement is beyond reach. Having more alternatives
opens the door to the use of new voting rules. We already discussed Limited Vot-
ing, the Plurality extension and the Antiplurality extension. But, we now almost
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nothing about the likelihood of paradoxical events for the rules of k-names, which
are frequently used for the election of the committees of size k. More generally, the
rule of k-names simply ask each voter to write k names on his ballot, and to give
one point to each candidate marked on a ballot. The poor performance of Limited
Voting in our setting cast a doubt on the use of such rules. To conclude, only massive
simulations and/or the development of new computation techniques will enable us to
precisely estimate the likelihood of many paradoxes when more than four candidates
are in play.

7 Appendices : Details on probability computations

7.1 Appendix A : One case in detail

In this section we will only focus on the probability computation of the event �abcd
is the collective ranking of the Plurality rule and abc is the new collective ranking
when d is removed�. The calculations for all the other events and for all the others
scoring rules follow the same scheme. So, with A = {a, b, c, d} and B = {a, b, c},
our objective is to evaluate the probability of the event described by equation (7.1)
under the IC assumption, for n large.

S(A,wP , π, a) > S(A,wP , π, b)

S(A,wP , π, b) > S(A,wP , π, c)

S(A,wP , π, c) > S(A,wP , π, d)

S(B,wP , π, a) > S(B,wP , π, b)

S(B,wP , π, b) > S(B,wP , π, c)

(7.1)

Given the labels of the 24 preference types for m = 4 presented in Table 2.1,
we rewrite each of the equations. S(A,wP , π, a) > S(A,wP , π, b) is described by
equation (7.2):

n1 + n2 + n3 + n4 + n5 + n6 > n7 + n8 + n9 + n10 + n11 + n12 (7.2)

S(A,wP , π, b) > S(A,wP , π, c) is described by equation (7.3):

n7 + n8 + n9 + n10 + n11 + n12 > n13 + n14 + n15 + n16 + n17 + n18 (7.3)

S(A,wP , π, c) > S(A,wP , π, d) is described by equation (7.4):

n13 + n14 + n15 + n16 + n17 + n18 > n19 + n20 + n21 + n22 + n23 + n24 (7.4)
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S(B,wP , π, a) > S(B,wP , π, b) is described by equation (7.5):

n1+n2+n3+n4+n5+n6+n19+n20 > n7+n8+n9+n10+n11+n12+n21+n22 (7.5)

S(B,wP , π, b) > S(B,wP , π, c) is described by equation (7.6):

n7+n8+n9+n10+n11+n12+n21+n22 > n13+n14+n15+n16+n17+n18+n23+n24 (7.6)

To make our calculations, we proceed by two steps.

1st step: we compute the probability of the event �abcd is the collective

ranking and S(B,wP , π, a) > S(B,wP , π, b) when d is removed�

This event is described by equations (7.2 to 7.5). To do so, we rewrite equation 7.5
by using a parameter t.

n1+n2+n3+n4+n5+n6+tn19+tn20 > n7+n8+n9+n10+n11+n12+tn21+tn22 (7.7)

When t = 0, equation (7.7) is equivalent to equation (7.2). In t = 1, it fully
describes the situation S(B,wP , π, a) > S(B,wP , π, b). Our proof technique will in
fact evaluate the probability that equations (7.2),(7.3),(7.4) and (7.7) are satis�ed
under IC for n large. In t = 0, we recover the value 1

24
which is the probability of

abcd to be the collective ranking while in t = 1, we will derive the probability the
event described by equations (7.2),(7.3),(7.4) and (7.7).

Given four candidates, it is assumed under the Impartial Culture assumption
that each voter is equally likely to have one of the 24 preference types. Let xi be
the random variable that associates to each voter i a 24-component vector with
probability 1

24
of having 1 in each position. The expectation of xi is

E(xi) =

(
1

24
,

1

24
, . . . ,

1

24

)
and the covariance matrix is a diagonal 24 × 24 matrix with the common entry σ
given by

σ2 = E(x2i )− E(xi)
2

Let

mT = (m1,m2, . . .m24)
T =

1

σ
√
n


 n1

...
n24

−


n
24
...
n
24
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The Central Limit Theorem in R23 implies

µ
[
mT
]
7→ 1

(
√

2π)23
e
−|t|2

2 λ

as n→∞ where t = (t1, t2, . . . , t24) ∈ R24, |t|2 = t21 + · · ·+ t224 and λ is the Lebesgue
measure on the 23-dimensional hyperplane t1 + · · · + t24 = 0. Note that since mT

has the measure supported on the hyperplane m1 + · · ·+m24 = 0, the limit of mT as
n→∞ is also a measure supported on t1 + · · ·+ t24 = 0. To compute the probability
that abcd is the collective ranking and S(B,wP , π, a) > S(B,wP , π, b) when d is
removed, we need to evaluate the probability that a voting situation is characterized
by the inequalities (7.2),(7.3),(7.4) and (7.7); m satis�es inequalities (7.2),(7.3),(7.4)
and (7.7) if and only if ñ = (n1, n2, . . . , n24) also satis�es them. Then, by the Central
Limit Theorem, we write

Pr
(
mT satis�es (7.2), (7.3), (7.4) and (7.7)

)
7→ 1

(
√

2π)23

∫
C1

e
−|t|2

2 dλ

where C1 = {t ∈ R24, t satis�es ((7.2), (7.3), (7.4) and (7.7); and
∑24

i=1(ti) = 0}.
As the measure

µ̄ ≡ 1

(
√

2π)23
e
−|t|2

2 λ

is absolutely continuous and radially symmetric, computing

1

(
√

2π)23

∫
C

e
−|t|2

2 dλ

reduces to �nding the measure µ̄ of the cone C1, when the measure is invariant to
rotations. The measure µ̄ of such a cone is proportional to the Euclidean measure of
the cone, that is, the measure on the sphere.

Saari and Tataru (1999) have developed a method of computing the probabilities
of voting events under the Impartial culture. Some re�nements of this method are
done in Merlin et al. (2000), Merlin and Valognes (2004). This method is mainly
based on linear algebra and the calculation of a di�erential volume in a spherical
simplex of dimension ν using the Schlä�i's formula (See Coxeter (1935), Schlä�i
(1950), Milnor (1982), Kellerhals (1989)). This formula is given by:

dvolν(C1) =
1

(ν − 1)

∑
0≤j<k≤ν

volν−2(Sj ∩ Sk)dαjk; vol0 = 1
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with αjk the dihedral angle formed by the facets Sj and Sk of the cone C1.
Following the arguments given by Saari and Tataru (1999), the probability that these
inequalities are met simultaneously for a voting situation when pi = 1

24
, i = 1, . . . , 24

for n large is equal to the surface of the spherical simplex T described by equations
(7.2),(7.3),(7.4), (7.7) on the surface of the unit sphere in R4, divided by the surface
of this sphere. More precisely, if we denote by P IC

∞ ((w,wB), abcd − ab) the limit
probability that abcd is the collective ranking and S(B,wP , π, a) > S(B,wP , π, b)
when d is removed, we will derive

P IC
∞ ((w,wB), abcd− ab) = 1 +

1

ω4

∫ t

0

dvolν(C1)

where ω4 = 2π2 is the volume of the unit sphere in R4.
Given the cone C1, let S1 be the facet de�ned by the equation (7.2), S2 the facet

de�ned by the equation (7.3), S3 the facet de�ned by the equation (7.4) and S4 the
facet de�ned by the equation (7.7).

Let ~v1, ~v2, ~v3, ~v4 be the normal vectors to the hyperplanes S1, S2, S3, S4.

~v1 = (1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~v2 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1, 0, 0, 0, 0, 0, 0)
~v3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1)
~v4 = (1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1, 0, 0, 0, 0, 0, 0, t, t,−t,−t, 0, 0)

Since ~vj and ~vk are respectively normal to Sj and Sk, we can use the relationship

cos(αjk) =
−~vj. ~vk
||~vj||.||~vk||

to derive the value of the dihedral angle αjk between vectors ~vj and ~vk.

α12 = α23 = π
3

α13 = α34 = π
2

α14 = π − arccos
( √

3√
3+t2

)
α24 = arccos

( √
3

2
√
3+t2

)
Therefore,

dα12 = dα13 = dα23 = dα34 = 0

dα14 = −
√
3

3+t2

dα24 = t
√
3

(3+t2)
√
9+4t2
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The vectors ~v1, ~v2, ~v3, ~v4 lie in a 4-dimension space. Vectors ~v5 to ~v24 form a basis
for the orthogonal subspace:

~v5 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
~v6 = (−1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~v7 = (−1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~v8 = (−1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~v9 = (−1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~v10 = (−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~v11 = (0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~v12 = (0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~v13 = (0, 0, 0, 0, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~v14 = (0, 0, 0, 0, 0, 0,−1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~v15 = (0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~v16 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
~v17 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
~v18 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
~v19 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~v20 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~v21 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0)
~v22 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1)
~v23 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,−2, 0)
~v24 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0,−2, 0)

Then, we can calculate the vertexes P123 = S1 ∩ S2 ∩ S3, P124 = S1 ∩ S2 ∩ S4,
P134 = S1 ∩ S3 ∩ S4 and P2345 = S2 ∩ S3 ∩ S4 by solving the following systems

P123 :



S1 = 0

S2 = 0

S3 = 0

S4 > 0

S5 = 0

S6 = 0

S7 = 0

.

.

.

.

.

.

S23 = 0

S24 = 0

P124 :



S1 = 0

S2 = 0

S3 > 0

S4 = 0

S5 = 0

S6 = 0

S7 = 0

.

.

.

.

.

.

S23 = 0

S24 = 0

P134 :



S1 = 0

S2 > 0

S3 = 0

S4 = 0

S5 = 0

S6 = 0

S7 = 0

.

.

.

.

.

.

S23 = 0

S24 = 0

P234 :



S1 > 0

S2 > 0

S3 = 0

S4 = 0

S5 = 0

S6 = 0

S7 = 0

.

.

.

.

.

.

S23 = 0

S24 = 0

The solutions of theses systems are:
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P123 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,−1,−1, 0, 0)
P124 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,−3,−3,−3,−3,−3,−3)
P134 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1)
P234 = (3t, 3t, 3t, 3t, 3t, 3t,−t,−t,−t,−t,−t,−t,−t,−t,−t,−t,−t,−t,−6− t,

−6− t, 6− t, 6− t,−t,−t)

Knowing these vertices, we are able to compute the volumes

vol(S1 ∩ S2) = vol(S1 ∩ S3) = π
2

vol(S1 ∩ S4) = arccos(
√
3
3

)
vol(S2 ∩ S3) = π − arccos( 2√

2t2+4
)

vol(S2 ∩ S4) = arccos( t
3
√
t2+2

)

vol(S3 ∩ S4) = arccos( t√
3t2+6

)

It comes from the Schlä�i's formula that,

dvol(C1) = 2vol(S1 ∩ S2)dα13 + vol(S1 ∩ S4)dα14 + vol(S2 ∩ S3)dα23

+vol(S2 ∩ S4)dα24 + vol(S3 ∩ S4)dα34

We have to multiply dvol(C1) by 24 and divide it 2 (since ν = 3) and by 2π2

the volume of the unit sphere in R4, then we obtain the �nal di�erential volume
24
4π2

∫ t
0
dvol(C1)dt. We then derive at t = 1, the value of the probability that abcd is

the collective ranking and S(B,wP , π, a) > S(B,wP , π, b) when d is removed

P IC
∞ ((w,wB), abcd− ab) = 1 +

6

π2

∫ 1

0

dvol(C1)dt = 0.762134

We can now move to the second step where we will derive our consistency probability
between abcd and abc when d is removed.

2nd step: we derive the consistency probability

The consistency probability we are looking for is equal to sum of P IC((w,wB), abcd−
ab) and the value of the probability that a voting situation is characterized by the
inequalities (7.2),(7.3),(7.4), (7.5) and (7.6). To compute the probability of this
voting situation, we need to rewrite inequality (7.6) using the parameter t.

n7+n8+n9+n10+n11+n12+tn21+tn22 > n13+n14+n15+n16+n17+n18+tn23+tn24

(7.8)
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When t = 0, equation (7.8) is equivalent to equation (7.3). In t = 1, it fully
describes the situation of equation (7.1). As in the �rst step, our proof technique
will be based on the same arguments and will evaluate the probability that equations
(7.2),(7.3),(7.4),(7.5) and (7.8) are satis�ed under IC for n large. In t = 0, we recover
the value P IC

∞ ((w,wB), abcd − ab) while in t = 1, we will derive the probability of
the event described by equations (7.2),(7.3),(7.4),(7.5) and (7.8).

By the Central Limit Theorem, we can write

Pr
(
mT satis�es (7.2), (7.3), (7.4), (7.5) and (7.8)

)
7→ 1

(
√

2π)23

∫
C2

e
−|t|2

2 dλ

where C2 = {t ∈ R24, t satis�es ((7.2), (7.3), (7.4), (7.5) and (7.8); and
∑24

i=1(ti) =
0}. Using the Schlä�i's formula

dvolρ(C2) =
1

(ρ− 1)

∑
0≤j<k≤ρ

volρ−2(Tj ∩ Tk)dθjk; vol0 = 1

Following the arguments stated by Saari and Tataru (1999), the probability that
inequalities (7.2),(7.3),(7.4), (7.5) and (7.8) are met simultaneously for a voting sit-
uation when pi = 1

24
, i = 1, . . . , 24 for n large is equal to the surface of the spherical

simplex T described by equations (7.2),(7.3),(7.4), (7.7) on the surface of the unit
sphere in R5, divided by the surface of this sphere. More precisely, we will derive

P IC
∞ ((wP , w

B
P ), abc/abcd) = P IC

∞ ((w,wB), abcd− ab) +
1

ω5

∫ t

0

dvolρ(C2)

where ω5 = 8π2

3
is the volume of the surface of the unit sphere in R5.

Given the cone C2, let T1 be the facet de�ned by the equation (7.2), T2 the facet
de�ned by the equation (7.3), T3 the facet de�ned by the equation (7.4), T4 the facet
de�ned by the equation (7.5) and T5 the facet de�ned by the equation (7.8).

Let ~s1, ~s2, ~s3, ~s4, ~s5 be the normal vectors to the hyperplanes T1, T2, T3, T4, T5.

~s1 = ~v1 = (1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~s2 = ~v2 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1, 0, 0, 0, 0, 0, 0)
~s3 = ~v3 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1)

~s4 = (1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1, 0, 0, 0, 0, 0, 0, 1, 1,−1,−1, 0, 0)
~s5 = (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,−1,−1,−1,−1,−1,−1, 0, 0, t, t,−t,−t)

Added to those obtained before, we then have the dihedral angles θjk between
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vectors ~sj and ~sk :
θ14 = 5π

6

θ34 = π
2

θ15 = θ35 = arccos
( √

3
2
√
3+t2

)
θ24 = arccos

(√
3
4

)
θ25 = π − arccos

( √
3√

3+t2

)
θ45 = arccos

(
3+t

4
√
3+t2

)
And then,

dθ14 = dθ24 = dθ34 = 0
dθ15 = dθ35 = dα24

dθ25 = dα14

dθ45 = (t−1)
√
3

(3+t2)
√
5t2−2t+13

The vectors ~s1, ~s2, ~s3, ~s4, ~s5 lie in a 4-dimension space. Vectors ~s6 and to ~s24 form
a basis for the orthogonal subspace:

~s6 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
~s7 = (−1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~s8 = (−1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~s9 = (−1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~s10 = (−1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~s11 = (−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~s12 = (0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~s13 = (0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~s14 = (0, 0, 0, 0, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~s15 = (0, 0, 0, 0, 0, 0,−1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~s16 = (0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~s17 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0)
~s18 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)
~s19 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
~s20 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~s21 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
~s22 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0, 0, 0)
~s23 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1, 0, 0)
~s24 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 1)

Then, we can calculate the vertexes P1234 = T1∩T2∩T3∩T4, P1235 = T1∩T2∩T3∩T5,
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P1245 = T1 ∩ T2 ∩ T4 ∩ T5, P1345 = T1 ∩ T3 ∩ T4 ∩ T5 and P2345 = T2 ∩ T3 ∩ T4 ∩ T5 by
solving the following systems

P1234 :



T1 = 0

T2 = 0

T3 = 0

T4 = 0

T5 > 0

T6 = 0

T7 = 0

.

.

.

.

.

.

T23 = 0

T24 = 0

P1235 :



T1 = 0

T2 = 0

T3 = 0

T4 > 0

T5 = 0

T6 = 0

T7 = 0

.

.

.

.

.

.

T23 = 0

T24 = 0

P1245 :



T1 = 0

T2 = 0

T3 > 0

T4 = 0

T5 = 0

T6 = 0

T7 = 0

.

.

.

.

.

.

T23 = 0

T24 = 0

P1345 :



T1 = 0

T2 > 0

T3 = 0

T4 = 0

T5 = 0

T6 = 0

T7 = 0

.

.

.

.

.

.

T23 = 0

T24 = 0

P2345 :



T1 > 0

T2 = 0

T3 = 0

T4 = 0

T5 = 0

T6 = 0

T7 = 0

.

.

.

.

.

.

T23 = 0

T24 = 0

The solutions of theses systems are:

P1234 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,−2,−2)
P1235 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2,−1,−1,−1,−1)
P1245 = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,−3,−3,−3,−3,−3,−3)
P1345 = (t, t, t, t, t, t, t, t, t, t, t, t,−t,−t,−t,−t,−t,−t,−2− t,−2− t,−2− t,

−2− t, 4− t, 4− t)
P2345 = (3, 3, 3, 3, 3, 3,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−1,−9,−9, 3, 3, 3, 3)

Knowing these vertices, we are able to compute the volumes (Tj ∩ Tk). Each of
these volumes is the area of a triangle on the sphere in R3 de�ned by some directions.
Table 7.1 gives the direction for each of these volumes. Let us consider the volume
(T1 ∩ T5). By the Gauss-Bonnet theorem, the area of the triangle on the sphere in
R3 de�ned by directions P1235, P1245 and P1345 is equal to the sum of the angles on
the surface of the triangle minus π. We denote by γ1235, γ1245 and γ1345 the angles on
the surface of the triangle respectively de�ned at the vertexes P1235, P1245 and P1345.
Also, we de�ne the angles δ1 = ̂P1235, P1245, δ2 = ̂P1235, P1345 and δ3 = ̂P1245, P1345.
By applying the the Gauss-Bonnet formula, we have

cos(γ1345) =
cos(δ1)− cos(δ2) cos(δ3)

sin(δ2) sin(δ3)

cos(γ1245) =
cos(δ2)− cos(δ1) cos(δ3)

sin(δ1) sin(δ3)

cos(γ1235) =
cos(δ3)− cos(δ1) cos(δ2)

sin(δ1) sin(δ2)
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Table 7.1: volumes and directions

volumes Directions
(T1 ∩ T2) P1235, P1235, P1245

(T1 ∩ T3) P1234, P1235, P1345

(T1 ∩ T4) P1234, P1245, P1345

(T1 ∩ T5) P1235, P1245, P1345

(T2 ∩ T3) P1234, P1235, P2345

(T2 ∩ T4) P1234, P1245, P2345

(T2 ∩ T5) P1235, P1245, P2345

(T3 ∩ T4) P1234, P1345, P2345

(T3 ∩ T5) P1235, P1345, P2345

(T4 ∩ T5) P1245, P1345, P2345

and,

vol(T1 ∩ T5) = γ1235 + γ1245 + γ1345 − π

= − arccos

( √
3

2
√
t2 + 3

)
+ arccos

(
t
√

2√
6t2 + 9

)

+ arccos

(
t
√

2

2
√

(2t2 + 3)(t2 + 3)

)
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In a similar way, we obtain

vol(T1 ∩ T2) =
π

3

vol(T1 ∩ T3) =
π

2
+ arccos

(
t
√

2

2
√

2t2 + 3

)
− arccos

( √
3√

2t2 + 3

)

vol(T1 ∩ T4) = arccos

(
1√
t2 + 3

)
− arccos

( √
3√

t2 + 3

)
+ arccos

(√
3

3

)

vol(T2 ∩ T3) =
π

2
+ arccos

(√
3

6

)
− arccos

(√
6

3

)

vol(T2 ∩ T4) = arccos

(
1

12

)
− arccos

(√
3

4

)
+ arccos

(√
3

9

)

vol(T2 ∩ T5) = arccos

(√
3

6

)
+ arccos

(
1

12

)
− π

6

vol(T3 ∩ T4) = arccos

(
t− 9

3
√

5t2 − 2t+ 9

)
− arccos

(
t− 1√

5t2 − 2t+ 9

)
+ arccos

(
1

3

)
vol(T3 ∩ T5) = arccos

(
4t− 3

2
√

5t2 − 2t+ 9

)
− arccos

(
(4t2 − t+ 6)

√
2

2
√

(5t2 − 2t+ 9)(2t2 + 3)

)

+ arccos

(
t
√

2√
6t2 + 9

)

vol(T4 ∩ T5) = − arccos

(
t− 1√

(5t2 − 2t+ 9)(t2 + 3)

)
+ arccos

(
(5t− 1

4
√

5t2 − 2t+ 9

)
+ arccos

(
t+ 3

4
√
t2 + 3

)

It comes from the Schlä�i's formula that,

dvol(C2) = vol(T1 ∩ T2)dθ12 + vol(T1 ∩ T3)dθ13 + vol(T1 ∩ T4)dθ14 + vol(T1 ∩ T5)dθ15
+vol(T2 ∩ T3)dθ23 + vol(T2 ∩ T4)dθ24 + vol(T2 ∩ T5)dθ25 + vol(T3 ∩ T4)dθ34
+vol(T3 ∩ T5)dθ35 + vol(T4 ∩ T5)dθ45
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We then multiply dvol(C2) by 24 and divide it by 8π2

3
the volume of the hy-

persphere in R5 and by 3 (since ρ = 4) to obtain the �nal di�erential volume
3
π2

∫ t
0
dvol(C2)dt. At t = 1, we then derive,

P IC
∞ ((w,wB), abc/abcd) = P IC

∞ ((w,wB), abcd− ab) +
3

π2

∫ 1

0

dvol(C2)dt

= 0.762134 +
3

π2

∫ 1

0

dvol(C2)dt

= 0.516969

7.2 Appendix B: A MAPLE sheet for computations

We provide here the maple sheet used to make all of the previous section for the case
in detail. The reader can adapt this sheet for all the other case in order to recover
our results.

MAPLE SHEET

#Use the linear algebra Maple's library
> with(linalg);

#Write down the vectors : v0 vector is the unit vector; here, vector v40 is
equivalent the parameterized vector v4 of the case in detail and to s6; v4 is
equivalent to vector s4 used in the second step. The other vectors, v1, v2 and v3
are derived simply as shown in Appendix A.

> v0 := ([1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]);
> v1 := ([1, 1, 1, 1, 1, 1, -1, -1, -1,-1,-1, -1, 0, 0, 0, 0, 0, 0,0,
0, 0, 0, 0, 0]);
> v2 := ([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,1,-1, -1, -1, -1, -1, -1,0,
0, 0, 0, 0, 0]);
> v3 := ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0,1, 1, 1, 1, 1, 1, -1, -1,-1,
-1, -1, -1]);
> v40:= ([1, 1, 1, 1, 1, 1, -1, -1, -1,-1,-1, -1, 0, 0, 0, 0, 0, 0,t,
t, -t, -t, 0, 0]);
> v4 := ([1, 1, 1, 1, 1, 1, -1, -1, -1,-1,-1, -1, 0, 0, 0, 0, 0, 0,1,
1, -1, -1, 0, 0]);
> v5 := ([0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,-1, -1, -1, -1, -1, -1,0,
0, t, t, -t, -t]);
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#We compute all the angles between two vectors
> A12 := angle(-v1,v2);

> A13 := angle(-v1,v3);

> A14 := simplify(angle(-v1,v4));

> A140 := simplify(angle(-v1,v40));

> A15 := simplify(angle(-v1,v5));

> A23 := angle(-v2,v3);

> A24 := simplify(angle(-v2,v4));

> A240 := simplify(angle(-v2,v40));

> A25 := simplify(angle(-v2,v5));

> A34 := simplify(angle(-v3,v4));

> A340 := simplify(angle(-v3,v40));

> A35 := simplify(angle(-v3,v5));

> A45 := simplify(angle(-v4,v5));

compute all the di�erential angles
> D12 := simplify(diff(A12,t));

> D13 := simplify(diff(A13,t));

> D14 := simplify(diff(A14,t));

> D140 := simplify(diff(A140,t));

> D15 := simplify(diff(A15,t));

> D23 := simplify(diff(A23,t));

> D24 := simplify(diff(A24,t));

> D240 := simplify(diff(A240,t));

> D25 := simplify(diff(A25,t));

> D34 := simplify(diff(A34,t));

> D340 := simplify(diff(A340,t));

> D35 := simplify(diff(A35,t));

> D45 := simplify(diff(A45,t));

STEP 1: we compute the probability of the event �abcd is the
collective ranking and S(B,wP , π, a) > S(B,wP , π, b) when d is
removed�
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Determine all the 19 Vectors (~v6 to ~v24) that form a basis for the orthogonal since
vectors ~v1, ~v2, ~v3, ~v40 lie in a 4-dimension space.

> N1:=nullspace(matrix([v0, v1, v2,v3 , v40]));

Build a super 24x24-matrix made of all the vectors ~v0, ~v1, ~v2, ~v3, ~v40 and ~v5 to ~v24
> MS1 := matrix([v0, V1, V2,V3 , v40,s6,...,s24]);

we can calculate the vertexes P123, P124, P134 and P234.
> f4 := ([0,0,0,0,4*t,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]);

> P123 := linsolve(MS1,f4);

> f3 := ([0,0,0,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]);

> P124 := linsolve(MS1,f3);

> f2 := ([0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]);

> P134 := linsolve(MS1,f2);

> f1 := ([0,24*t,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]);

> P234 := linsolve(MS1,f1);

Compute the volumes Sjk
> S12:=simplify(angle(P123, P124));

> S13:=simplify(angle(P123, P134));

> S14:=simplify(angle(P124, P134));

> S23:=simplify(angle(P123, P234));

> S24:=simplify(angle(P124, P234));

> S34:=simplify(angle(P134, P234));

#Applying the Schlä�i's formula, we the obtain
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> DV1:=(S12*D12+S13*D13+S14*D140+S23*D23+S24*D240+S34*D340);

> VD1 :=Int(DV1, t=0..1)/(4*Pi^2);

> PF1:=1+24*VD1; #

> Ps:=evalf(PF1); # the fonction "evalf()" gives the numerical value

STEP 2: we derive the consistency probability

#Determine all the 18 Vectors (s6 to s24) that form a basis for the orthogonal since
vectors V1; V2; V3; V4 and V5 lie in a 5-dimension space.

> N:=nullspace(matrix([v0,v1, v2, v3, v4, v5]));

#Build a super 24x24-matrix made of all the vectors v0, v1, v2, v3, v4, v5 and
s6 to s24.

> MS := matrix([v0, v1, v2, V3, v4, v5, v6,...,v_24]);

> #we can calculate the vertexes
> T_1234,T_1235,T_1245,T_1245 and
> T_2345.

> p5 := ([0,0,0,0,0,6*t,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]);

> P1234 := linsolve(MS,p5);

> p4 := ([0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]);

> P1235 := linsolve(MS,p4);

> p3 := ([0,0,0,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]);

> P1245 := linsolve(MS,p3);

> p2 := ([0,0,12*t,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]);

> P1345 := linsolve(MS,p2);

> p1 := ([0,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]);

> P2345 := linsolve(MS,p1);

# In the following sequence of instructions, we apply the Gauss-Bonnet theorem
and then we obtain the volumes Tjk = vol(Tj ∩ Tk).

38



> Q11 := simplify(angle(P1234,P1235));

> Q12 := simplify(angle(P1234,P1245));

> Q13 := simplify(angle(P1235,P1245));

> C11 := simplify(cos(Q11)- cos(Q12)*cos(Q13))/(sin(Q12)*sin(Q13));

> C12 := simplify(cos(Q12)- cos(Q11)*cos(Q13))/(sin(Q11)*sin(Q13));

> C13 := simplify(cos(Q13)- cos(Q11)*cos(Q12))/(sin(Q11)*sin(Q12));

> T12 := simplify(arccos(C11) +arccos(C12) + arccos(C13) -Pi);

> Q21 := simplify(angle(P1234,P1235));

> Q22 := simplify(angle(P1234,P1345));

> Q23 := simplify(angle(P1235,P1345));

> C21 := simplify(cos(Q21)- cos(Q22)*cos(Q23))/(sin(Q22)*sin(Q23));

> C22 := simplify(cos(Q22)- cos(Q21)*cos(Q23))/(sin(Q21)*sin(Q23));

> C23 := simplify(cos(Q23)- cos(Q21)*cos(Q22))/(sin(Q21)*sin(Q22));

> T13 := simplify(arccos(C21) +arccos(C22) + arccos(C23) -Pi);

> Q31 := simplify(angle(P1234,P1245));

> Q32 := simplify(angle(P1234,P1345));

> Q33 := simplify(angle(P1245,P1345));

> C31 := simplify(cos(Q31)- cos(Q32)*cos(Q33))/(sin(Q32)*sin(Q33));

> C32 := simplify(cos(Q32)- cos(Q31)*cos(Q33))/(sin(Q31)*sin(Q33));

> C33 := simplify(cos(Q33)- cos(Q31)*cos(Q32))/(sin(Q31)*sin(Q32));

> T14 := simplify(arccos(C31) +arccos(C32) + arccos(C33) -Pi);

> Q41 := simplify(angle(P1345,P1235));

> Q42 := simplify(angle(P1345,P1245));

> Q43 := simplify(angle(P1235,P1245));

> C41 := simplify(cos(Q41)- cos(Q42)*cos(Q43))/(sin(Q42)*sin(Q43));

> C42 := simplify(cos(Q42)- cos(Q41)*cos(Q43))/(sin(Q41)*sin(Q43));

> C43 := simplify(cos(Q43)- cos(Q41)*cos(Q42))/(sin(Q41)*sin(Q42));

> T15:=simplify(simplify(arccos(C41)+arccos(C42) + arccos(C43)-Pi));

> Q51 := simplify(angle(P1234,P1235));
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> Q52 := simplify(angle(P1234,P2345));

> Q53 := simplify(angle(P1235,P2345));

> C51 := simplify(cos(Q51)- cos(Q52)*cos(Q53))/(sin(Q52)*sin(Q53));

> C52 := simplify(cos(Q52)- cos(Q51)*cos(Q53))/(sin(Q51)*sin(Q53));

> C53 := simplify(cos(Q53)- cos(Q51)*cos(Q52))/(sin(Q51)*sin(Q52));

> T23 := simplify(arccos(C51) +arccos(C52) + arccos(C53) -Pi);

> Q61 := simplify(angle(P1234,P1245));

> Q62 := simplify(angle(P1234,P2345));

> Q63 := simplify(angle(P1245,P2345));

> C61 := simplify(cos(Q61)- cos(Q62)*cos(Q63))/(sin(Q62)*sin(Q63));

> C62 := simplify(cos(Q62)- cos(Q61)*cos(Q63))/(sin(Q61)*sin(Q63));

> C63 := simplify(cos(Q63)- cos(Q61)*cos(Q62))/(sin(Q61)*sin(Q62));

> T24 := simplify(arccos(C61) +arccos(C62) + arccos(C63) -Pi);

> Q71 := simplify(angle(P1235,P1245));

> Q72 := simplify(angle(P1235,P2345));

> Q73 := simplify(angle(P1245,P2345));

> C71 := simplify(cos(Q71)- cos(Q72)*cos(Q73))/(sin(Q72)*sin(Q73));

> C72 := simplify(cos(Q72)- cos(Q71)*cos(Q73))/(sin(Q71)*sin(Q73));

> C73 := simplify(cos(Q73)- cos(Q71)*cos(Q72))/(sin(Q71)*sin(Q72));

> T25 := simplify(arccos(C71) +arccos(C72) + arccos(C73) -Pi);

> Q81 := simplify(angle(P1234,P1345));

> Q82 := simplify(angle(P1234,P2345));

> Q83 := simplify(angle(P1345,P2345));

> C81 := simplify(cos(Q81)- cos(Q82)*cos(Q83))/(sin(Q82)*sin(Q83));

> C82 := simplify(cos(Q82)- cos(Q81)*cos(Q83))/(sin(Q81)*sin(Q83));

> C83 := simplify(cos(Q83)- cos(Q81)*cos(Q82))/(sin(Q81)*sin(Q82));

> T34 := simplify(arccos(C81) +arccos(C82) + arccos(C83) -Pi);

40



> Q91 := simplify(angle(P1235,P1345));

> Q92 := simplify(angle(P1235,P2345));

> Q93 := simplify(angle(P1345,P2345));

> C91 := simplify(cos(Q91)- cos(Q92)*cos(Q93))/(sin(Q92)*sin(Q93));

> C92 := simplify(cos(Q92)- cos(Q91)*cos(Q93))/(sin(Q91)*sin(Q93));

> C93 := simplify(cos(Q93)- cos(Q91)*cos(Q92))/(sin(Q91)*sin(Q92));

> T35 := simplify(arccos(C91) +arccos(C92) + arccos(C93) -Pi);

> Q101 := simplify(angle(P1245,P2345));

> Q102 := simplify(angle(P1345,P1245));

> Q103 := simplify(angle(P1345,P2345));

> C101 := simplify(cos(Q101)-cos(Q102)*cos(Q103))/(sin(Q102)*sin(Q103));

> C102 := simplify(cos(Q102)-cos(Q101)*cos(Q103))/(sin(Q101)*sin(Q103));
> C103 := simplify(cos(Q103)-
> cos(Q101)*cos(Q102))/(sin(Q101)*sin(Q102));

> T45 := simplify(arccos(C101) +arccos(C102) + arccos(C103) -Pi);

#We then derive the �nal di�erential volume by apply the Schla�i's formula
> DV :=(D12*T12+D13*T13+D14*T14+D15*T15+D23*T23+D24*T24
> +D25*T25+D34*T34+D35*T35+D45*T45);

#We then derive the �nal di�erential volume
> VF := Int(DV, t=0..1)/(8*Pi^2);

#We then obtain our probability
> P:=Ps+24*VF;

> evalf(%);
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