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Abstract:
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capture ambiguity aversion through a difference in event weighting between risk and uncertainty, like the
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applications of ambiguity models. We could not reject the hypothesis that utility and loss aversion were the
same for risk and uncertainty, suggesting that utility primarily reflects attitudes towards outcomes. Utility was
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models that explain ambiguity aversion through a difference in event weighting and suggest that descriptive
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1. Introduction

An extensive amount of empirical work, originating from Ellsberg's (1961) famous thought
experiment, shows that people are not neutral towards ambiguity, as assumed by subjective
expected utility. New models have been proposed to explain these ambiguity attitudes. Broadly
speaking, these ambiguity models can be subdivided into two classes. The first class models
ambiguity aversion through a difference in utility between risk (known probabilities) and uncertainty
(unknown probabilities). The best-known model of this class is the smooth ambiguity model of
Klibanoff et al. (2005). Other models that belong to this class were proposed by Nau (2006), Chew et
al. (2008), Seo (2009), and Neilson (2010). The second class of models assumes that utility does not
depend on the source of uncertainty and is the same for risk and uncertainty. Instead, ambiguity
aversion is modeled through a difference in event weighting. This class includes the multiple priors
models (Gilboa and Schmeidler 1989, Jaffray 1989, Ghirardato et al. 2004) and modifications thereof
(Gajdos et al. 2008, Maccheroni et al. 2006), vector expected utility (Siniscalchi 2009), Choquet
expected utility (Gilboa 1987, Schmeidler 1989), and prospect theory (Kahneman and Tversky 1979,
Tversky and Kahneman 1992).

This paper tests whether utility is source-independent and the same for risk and uncertainty. We
assume a general utility model, previously suggested by Miyamoto (1988), Luce (1991), and
Ghirardato and Marinacci (2001), that includes most of the ambiguity models of the second class as
special cases, and generalize it to include sign-dependence to also cover prospect theory. We tested
the central condition underlying this model and obtained support for it. We measured utility for
gains and for losses and also measured loss aversion. Previous evidence suggests that the distinction
between gains and losses is relevant because ambiguity attitudes differ between gains and losses
(e.g. Cohen et al. 1987, Hogarth and Kunreuther 1989, Abdellaoui et al. 2005, Du and Budescu 2005)
and loss aversion is crucial in explaining attitudes towards both risk (Rabin 2000) and ambiguity

(Roca et al. 2006).

Measuring loss aversion is complex, in particular if event weighting may be different for gains and
losses. Previous measurements of loss aversion sidestepped this problem by introducing simplifying
assumptions. We introduce a new method to measure loss aversion that imposes no simplifying
assumptions and requires no complete measurement of utility. It can easily be applied, which may
encourage the use of ambiguity models in decision analysis. Our method extends the trade-off
method of Wakker and Deneffe (1996) by allowing standard sequences (sequences of outcomes for
which the utility difference between successive elements is constant) to pass through the reference

point. Our method also simplifies the axiomatization of ambiguity models as there is a close



connection between measurements of utility using the trade-off method and preference conditions

(K6bberling and Wakker 2003).

Our experimental data contain two messages. First, they provide support for models that explain
ambiguity aversion through a difference in event weighting. We could not reject the hypothesis that
utility and loss aversion were the same for risk and uncertainty. This suggests that utility is source-

independent and primarily reflects attitudes towards outcomes.

The second message is that descriptive ambiguity models should allow for reference-dependence of
utility. We obtained clear evidence that utility differed for gains and losses and there was sizeable
loss aversion. Most ambiguity models do not allow for reference-dependence and assume that
ambiguity attitudes are the same for gains and losses. This assumption may be adequate for

normative purposes, but, as our data clearly show, does not match behavior.

2. Background
2.1. Binary prospect theory

Consider a decision maker who has to make a choice in the face of uncertainty. Uncertainty is
modeled through a state space S. Exactly one of the states will obtain, but the decision maker does

not know which one. Subsets E of S are called events and E€ denotes the complement of E.

Acts map states to outcomes. Outcomes are money amounts and more money is preferred to less. In
our measurements, we will only use two-outcome acts xgy, signifying that the decision maker
obtains € x if event E occurs and € y otherwise. If probabilities are known, we will write x,,y for the
act that pays € x with probability p and €y with probability 1 —p. We will refer to xzy as an
uncertain act (meaning that probabilities are unknown) and to x,y as a risky act (meaning that

probabilities are known).

We use conventional notation to express the preference of the decision maker, letting >, >, and -
represent strict preference, weak preference, and indifference. Preferences are defined relative to a
reference point x,. Gains are outcomes strictly preferred to x, and losses are outcomes strictly less
preferred than x,. An act is mixed if it involves both a gain and a loss. For mixed acts the notation
xgy signifies that x is a gain and y is a loss. A gain act involves no losses (i.e. both x and y are
nonnegative) and a loss act involves no gains. For gain and loss acts the notation xzy signifies that
the absolute value of x exceeds the absolute value of y, i.e. if x and y are gains then x > y and if x

and y are losses thenx < y .



Under binary prospect theory (PT) the decision maker’s preferences over mixed acts xpy are

evaluated by:
WHEU(x) + W= (EDU®), (1a)

and preferences over gain or loss acts by:
WiEWE) +(1-WiE))UG), (1b)

where i = + for gains and i = — for losses. U is a strictly increasing, real-valued utility function that
satisfies U(xy) = 0. The utility function is a ratio scale and we can choose the utility of one outcome
other than the reference point. U is an overall utility function that includes loss aversion. In
empirical applications U is often decomposed in a basic utility function, capturing the decision
maker’s attitudes towards final outcomes, and a loss aversion coefficient A capturing attitudes
towards gains and losses (Sugden 2003, Kébberling and Wakker 2005, Készegi and Rabin 2006). Our

method does not require this decomposition.

The event weighting functions W', i = +,—, assign a number W(E) to each event E such that
(i) W @) =0
(ii) wis) =1
(iii) W is monotonic: E D F implies W{(E) = Wi(F).

The event weighting functions W depend on the sign of the outcomes and may be different for
gains and losses. They need not be additive. For gains, binary PT contains most transitive ambiguity
models as special cases, as was pointed out by Miyamoto (1988), Luce (1991), and Ghirardato and
Marinacci (2001). The ambiguity models only differ when the number of outcomes is at least three.

Equations (1a) and (1b) represent the extension of these models to include sign-dependence.

Binary PT evaluates mixed risky acts x,y as

wr@UE) +w- (1 —-p)U) (2a)
and gain and loss risky acts x,y as

wi U@ + (1-wi@)) UG, i = +,—. (2b)

w' is a strictly increasing probability weighting function that satisfies w'(0) = 0 and w'(1) = 1 and

again may differ between gains and losses. Hence, in the evaluation of risky acts the event weighting



functions W are replaced by probability weighting functions w'. Binary PT assumes that utility is the
same for risk and uncertainty. Ambiguity aversion is modeled through a difference between W' and

wt.

2.2. Previous evidence

Tversky and Kahneman (1992) assumed that utility differs between gains and losses and is S-shaped,
concave for gains and convex for losses. In addition, they assumed that utility is steeper for losses
than for gains, reflecting loss aversion. Nearly all the empirical evidence on utility comes from
decision under risk. There is much evidence that utility for gains is indeed concave (Wakker 2010).
For losses the evidence is more equivocal. While most studies found convex utility, some have also
found linear or concave utility (e.g. Bruhin et al. 2010). The utility for losses was usually closer to

linear than the utility for gains.

Empirical evidence on utility under uncertainty is scarce. Abdellaoui et al. (2005) measured utility
under uncertainty and confirmed that it was concave for gains and slightly convex for losses. Their
parametric estimates were close to those previously obtained under risk, but they did not directly
measure utility under risk. Abdellaoui et al. (2011) and Vieider et al. (2013) measured utility under
risk and under uncertainty for small stakes and under parametric assumptions about utility. They
found that utility was linear both for risk and for uncertainty. This finding might be due to the small

stakes used in these studies: for small stakes utility is usually close to linear (Wakker 2010).

Nearly all empirical measurements of loss aversion made simplifying assumptions about utility and
probability weighting, typically assuming linear utility and either ignoring probability weighting
(Pennings and Smidts 2003, Booij and van de Kuilen 2009, Baltussen et al. 2012)" or assuming equal
weighting for gains and losses (Gaechter et al. 2007). The exception is Abdellaoui et al. (2007) who
imposed no simplifying assumptions on either probability weighting or utility. However, they
measured loss aversion in decision under risk only and their method is not applicable in decision

under uncertainty.

Most studies found loss aversion coefficients around 2, meaning that losses weight approximately
twice as much as absolutely commensurate gains (Booij et al. 2010). A difficulty in comparing the
results of these studies is that they not only made different parametric assumptions, but also

adopted different definitions of loss aversion.

'Booij and van de Kuilen (2009) tested for the robustness of their findings by using probability weights
estimated in other studies.



Finally, even though binary PT is consistent with much of the empirical data that has been collected
on decision under risk and uncertainty and includes many ambiguity models as special cases, there is
some evidence challenging it. For example, Starmer and Sugden (1993) and Birnbaum (2008)
reported event-splitting effects that violate binary PT and Birnbaum and Bahra (2007) and Wu and
Markle (2008) obtained violations of binary PT for mixed acts. We, therefore, included a test of the

main condition underlying binary PT in our experiment. This test is explained below.

3. Measurement method

Our method for measuring utility and loss aversion consists of three stages and is summarized in
Table 1. In the first stage, a gain and a loss are elicited that connect utility for gains (measured in the
second stage) with utility for losses (measured in the third stage). The measurements in the second
and in the third stage employ the trade-off method of Wakker and Deneffe (1996). Within each
domain, we determine a standard sequence of outcomes such that the utility difference between
successive elements of the sequence is constant. The trade-off method is commonly used in decision
theory (Wakker 2010), but thus far it could only be used to measure utility for gains and utility for
losses separately. It could not be used to measure loss aversion, which requires that the utility for
gains and the utility for losses can be compared. Our method allows measuring utility for gains and
utility for losses jointly and, consequently, it permits the measurement of loss aversion. In all the
derivations presented below we imposed no parametric assumptions on utility and the weighting

functions W' and w',i = +, —. Hence, our method is parameter-free.

Table 1: Three-stage procedure to measure utility

The third column shows the quantity that was assessed in each of the three stages of the procedure. The fourth column
shows the indifference that was elicited. The fifth column shows the stimuli used in the experiment. £, and k; ,, were
used to test for consistency (see Section 4 for explanation).

Assessed quantity Indifference Choice variables
G = €2000
E = color of a ball
L GgL~xq drawn from an
Stage 1 unknown Ellsberg urn,
p="r
xy x§~Ggxg
X1 X1 ~Lgexg
Stage 2 Step 1 L xi pL~tpexg £ =—€300;k; =6
Step 2 to kg x;' XJ*EL~X;+-1E€ e = €0, kg, =3
Stage 3 Step 1 g 91 ~GrXo g = €300; k, = 6
Step2tok; Xj GEX| ~GEXj_1




3.1 First stage: elicitation of the gauge outcomes

We start by selecting an event E that will be kept constant throughout the first stage and a gain G.

Then we elicit the loss L for which Gz L~x. It follows from equation (1a) that:
WH(EYU(G) + W (E)U(L) = U(xy) = 0. (3)

We next elicit certainty equivalents x; and xi such that x; ~Ggx, and x7 ~Lgcx,. The indifference

x§ ~Ggx, implies that

UG = WHEU(G). (4)
The indifference x{ ~Lgcxy implies that

U(xy) =W (EOUL). (5)
Combining Egs. (3)— (5) gives

Ulx]) = =U(x1). (6)

Equation (6) defines the first elements x; and x; of the standard sequences for gains and losses

that we will construct in the second and third stages.

For choice under risk, the elicitation of x;" and x; is similar except that the event E is replaced by a
known probability p, and that the weights W*(E) and W~(E€) are replaced by w*(p) and
w~ (1 — p), respectively.

3.2 Second and third stage: elicitation of utility for gains and losses

In the second stage, we elicit a standard sequence of gains. Let £ be a prespecified loss. We first
elicit the loss L such that the decision maker is indifferent between the acts xfEL and fgcx,, where
x; is the gain that was elicited in the first stage. We could take an event E’ different from the event
E used in the first stage, but, for simplicity, we used in our experiment the same event in all three

stages. The indifference x1+E,C~4?Ecx0 implies that
WH(EYU(x{) + W (EYU L) = W (EYU(). (7)

Rearranging Eq. (7) and using U(x,) = 0 gives,



W~ (E®)
wH(E)

UQx) = Ulxo) = (U@ -uw). (8)

Next, we elicit the gain x such that x;'E£~x1+E€. From this indifference we obtain after rearranging

W~ (E®)

U(x;)—U(xf)=W+—(E)(U({’)—U(L)). (9)
Combining Egs. (8) and (9) gives :
U(x) —UG) = UG — Ulxo). (10)

We proceed by eliciting a series of indifferences x]-*'EL~xj+_1E

4,j = 2, ..., kg, to obtain the sequence
{x0, x5, x5, .., x{_}. Itis easy to see that for all j, U(x;") — U(x;"4) = U(xi") — U(x,). For decision

under risk, we apply the above procedure with the event E replaced by a probability p.

The standard sequence of losses is constructed similarly. We select a gain g and an event E and
elicit the gain G such that Gpx{ ~ggxy.2 We then proceed to elicit a standard sequence
{xo,xl_,xz_, ...,x,:L} by eliciting a series of indifferences Ggx;j ~ggx;_q, j = 2, ..., k. For risk, we

replace the event E by a probability p.

By combining the second and the third stages we have elicited a sequence
{x,:L, ...,xl',xo,xf', ...,x,:'G} that runs from the domain of losses through the reference point to the
domain of gains and for which the utility difference between successive elements is constant. We can
scale utility by selecting the utility of an arbitrary element. In the analyses reported below, we set
U(xi,) = 1 from which it follows that U(x;") = j/kg for j = 1,...,kg, and U(x;") = —j/kg, for

j = 1, ""kL'

4. Experiment
4.1 Experimental set-up

Subjects were 75 economics students of the Erasmus School of Economics, Rotterdam (29 female,
mean age of 20.7 years). Each subject was paid a flat fee of €10 for participation in the experiment.
Before conducting the actual experiment, the experimental protocol was tested in several pilot

sessions.

The experiment was run on computers. Subjects answered the questions individually in sessions of

2 Again, we could have selected an event E" different from the events used in the first two stages, but we used
the same event in our experiment.



at most two subjects. They first received instructions about the tasks and then completed five
training questions. Subjects were told that there were no right or wrong answers and that they
should go through the experiment at their own pace. They were instructed to approach the
experimenter if they needed any advice concerning the experiment. A session lasted 40 minutes on

average.

The order in which utility under risk and uncertainty were measured was randomized between
sessions. When a subject had completed the first part of the experiment, the experimenter would
approach her to explain the next part. Within the risk and uncertainty elicitations, the second and
third stage were also randomized; some subjects started with the elicitation of the gain sequence,
others with the elicitation of the loss sequence. The first stage always had to come first because it

served as an input for the other two stages.

We used sizeable monetary amounts because we were interested in studying both utility curvature
and loss aversion. Utility is approximately linear over small intervals (Wakker and Deneffe 1996) and
we feared that it would be hard to detect differences between utility under risk and uncertainty for
small stakes. Given that substantial losses were involved, all choices were hypothetical. It is
impossible to find subjects willing to participate in an experiment where they can lose substantial
amounts of money. We will provide a more detailed discussion of the use of incentives in the

Discussion Section.

We did not directly ask subjects for their indifference values, but, instead, used a series of binary
choice questions to zoom in at them. Examples of such a zooming-in process can be found in Table
Al in the appendix. We applied a choice-based elicitation procedure as previous research suggests
that it leads to more reliable results than directly asking for indifference values (Bostic et al. 1990,

Noussair et al. 2004).

4.2 Details

To perform the elicitation described in Section 3, we had to specify a number of parameters, which
are depicted in the final column of Table 1. We made the common assumption that the reference
point x, was equal to 0. In the risk condition, the outcome of an act was determined by drawing a
ball from an urn containing five red balls and five black balls. Subjects could state which color they
preferred to bet on with the chance of winning always equal to 50 percent. In the uncertainty
condition, the outcome of an act was determined by drawing a ball from an urn containing ten balls,

which were either red or black in unknown proportions. Again, subjects could select the color they



preferred to bet on.

Both for gains and for losses, we elicited six points of the utility function under both risk and
uncertainty. Next to these elicitations, we performed a second smaller sequence in the domain of
gains, varying the gauge amount . By definition £ needs to be smaller or equal to x;. In the main
elicitation we set £ = —€300. Asking the question whether the elicited amounts would depend on
the value of ¢, we also elicited x§ and x3 using an alternative gauge amount £,;; = € 0. Under
binary PT the elicitations of x3 and x3 should not depend on the selected value of £. This second
elicitation was meant to test sign-comonotonic trade-off consistency (Kébberling and Wakker 2003),

the central condition underlying binary PT.

Figures A1-A3 in the appendix show the displays used under uncertainty. The screens under risk
were similar, except that the two branches would simply say 50% rather than “Red” or “Black”.
Figure Al displays the typical decision that subject had to make. Subjects were faced with a choice
between two acts denoted as options A and B. They could not state indifference. By choosing
between the two acts, the subject narrowed down the interval in which her indifference value

should fall.

After narrowing down the interval thrice, we presented subjects with a scrollbar (Figure A2). The
scrollbar allowed subjects to specify their indifference value up to €1 precision. The starting point of
the scrollbar was in the middle of the interval determined by their previous choices. The range of the
scrollbar was wider than this interval, so that subjects could correct any mistakes they might have
made. The data on the use of the scrollbar also give an indication of the quality of the data. If many
subjects would provide answers that did not align with their previous choices, possibly even violating
stochastic dominance, this might signal poor understanding of the task. After specifying a value with
the scrollbar, subjects were asked to confirm their choice (Figure A3). If they cancelled their choice,

the process started over. If subjects confirmed their choice, they moved on to the next elicitation.

We included a number of repetitions to test for consistency. First, in each of the six standard
sequences (the short and the long gain sequences and the loss sequence for both risk and
uncertainty), we repeated the second-to-last iteration in the elicitation of xé,i = +, —. Repeating
the second-to-last iteration is a strong test of consistency, as subjects were probably close to
indifference at the end of the iteration process. Furthermore, at the end of eliciting the long gain
sequence, we elicited x; again, for both risk and uncertainty. Together, these repetitions and the

way in which subjects used the scrollbar allowed us to gain insight into the quality of the data.
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4.3 Analyses

4.3.1 Analyses of utility curvature

Two different methods were used to investigate utility curvature.® For the first, nonparametric,
method, we calculated the area under the utility function. The domain of U was normalized to [0,1],
by transforming every gain xj+ to the value xfr/xgr and every loss x;” to x]-_/xg.4 If utility is linear,
the area under this normalized curve equals %. For gains, we consider utility to be convex [concave]
if the area under the curve is smaller [larger] than %. For losses, utility is considered to be convex

[concave] if the area under the curve is larger [smaller] than .

We also analyzed the utility function by parametric estimation. We employed the power family, x%,
as it is the most commonly employed parametric family. For gains [losses] a > 1 corresponds to
convex [concave] utility, @ = 1 corresponds to linear utility, and a < 1 corresponds to concave
[convex] utility. Estimation was done using nonlinear least squares. To test for robustness, we also
performed a mixed-effects estimation in which each individual parameter was estimated as the sum
of a fixed effect, common to all subjects, and an individual-specific random effect. The results were
similar. A potential problem in estimating a model like binary PT using nonlinear least squares is
collinearity between utility and the event weights, which implies that the obtained estimates may
not be uniquely identified. The trade-off method avoids this problem by keeping event weighting

fixed, while eliciting utility and, hence, the obtained estimates are uniquely identified.

4.3.2 Loss aversion

In the literature, loss aversion has been defined in a multitude of ways. Abdellaoui et al. (2007)
concluded that the definitions proposed by Kahneman and Tversky (1979) and Kébberling and
Wakker (2005) were empirically most useful, and we will use these. Other definitions (Wakker and
Tversky 1993, Bowman et al. 1999, Neilson 2002) turned out to be too strict for empirical purposes,

leaving many subjects unclassified.

Kahneman and Tversky (1979) defined loss aversion as - U(—x) > U(x) for all x > 0. To measure

loss aversion coefficients, we computed —U(—xf)/U(xf) and —U(—x]-_)/U(xj_) forj=1,..,6,

® We also used a third, nonparametric, method based on changes in the slope of utility. This method led to
similar conclusions.
* One subject violated monotonicity so that Xg was not the largest loss. For this subject we transformed losses

xj to xf_/{igf,i_?e x; ).
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whenever possible.” Usually U(—xj+) and U(—x;") could not be observed directly and had to be
determined through linear interpolation. Some subjects occasionally violated stochastic dominance.
As a result, their utility was not unique and one amount could have multiple utilities. For these
amounts, utility was undefined. A subject was classified as loss averse if —-U(—x)/U(x) > 1 for all
observations, as loss neutral if -U(—x)/U(x) =1 for all observations, and as gain seeking if
-U(—x)/U(x) < 1 for all observations. To account for response error, we also used more a lenient
approach, classifying subjects as loss averse, loss neutral, or gain seeking if the above inequalities

held for more than half of the observations.

Koébberling and Wakker (2005) defined loss aversion as the kink of utility at the reference point
(Benartzi and Thaler 1995 suggested a similar definition). Formally, they defined loss aversion as
U1(0)/U;(0), where U{(0) represents the left derivative and U[(0) the right derivative of U at the
reference point. To operationalize this empirically, we computed each subject’s coefficient of loss
aversion as the ratio of U(xy)/xy over U(x;)/x;, because x; and x; are the loss and gain closest
to the reference point. Given that U(x;) = —U(x{), this ratio is equal to x; /—x. Hence, our
method immediately gives an approximation of Kdbberling and Wakker’s (2005) loss aversion
coefficient without the need to further measure utility. A subject was classified as loss averse if this

ratio exceeded 1, as loss neutral of it was equal to 1, and as gain seeking if it was smaller than 1.

5. Results

Three subjects violated stochastic dominance in the first stage of the measurement procedure. This
undermines their subsequent answers and they were removed from the analyses. For the remaining
72 subjects, we could determine the entire utility function, for both gains and losses and under both
risk and uncertainty. Of these 72 subjects, 14 violated stochastic dominance at least once. Violations
of stochastic dominance potentially signal a lower degree of understanding or a lower degree of
effort put in the task. We, therefore, also analyzed the data including only the 58 subjects who never

violated stochastic dominance, but this led to similar conclusions.

® These computations required that —xj+ was contained in [xg, 0) and —x;” in (0, x].

12



5.1 Consistency checks

Overall, consistency was satisfactory. Subjects made the same choice in 63.7% of the repeated
choices. Reversal rates round %3 are common in the literature (Stott 2006). Moreover, our
consistency test was strict, as subjects were close to indifference in the repeated choice and, hence,

reversals were more likely. There were no differences in consistency between risk and uncertainty.

The correlation between the original measurement and the repeated measurement of x; was

almost perfect. For risk, Kendall’s T was 0.924, for uncertainty it was 0.938.

As a final indication of consistency, we compared whether the final answer provided by using the
slider fell within the interval as set up by the bisection procedure. Subjects provided answers that
aligned with their original choices. Furthermore, when a subject’s final answer was outside the
bisection interval, it typically only violated the final choice, probably indicating that they were close

to indifference at this point.

5.2 A test of binary PT

As explained in Section 4, we elicited two sequences of gains, a longer one based on £ = —€300,
which we use in the main analysis, and a shorter one based on £,;; = €0. If our subjects behaved
according to binary PT, then the values of x5 and x3 in the short sequence should be equal to those

obtained in the long sequence.

We found support for binary PT, both for risk and for uncertainty. The correlation between the
obtained values was substantial. Under risk, Kendall’s T was 0.564 for x3 and 0.518 for x§. Under
uncertainty, these values were 0.694 for xF and 0.625 for xJ. All correlation coefficients were
different from 0 (P < 0.001). Moreover, for uncertainty, we could not reject the hypotheses that the
values of x5 and x3 obtained in the short sequence were equal to those obtained in the long
sequence (Wilcoxon test, both P > 0.684). For risk, the values of x5 differed marginally (P = 0.055),
but the values of x3 did not differ (P = 0.138). Hence, even though x3 was chained to xF, the

marginal difference for x3 did not carry over to x3.

5.3 Ambiguity aversion

The measurement of L and x{ in stage 1 of our method provide insight into subjects’ ambiguity

attitudes. Let L, and L, denote the elicited values of L for risk and uncertainty, respectively. Then,

13



2000 5L,~0 and 20005L,,~0. A subject is ambiguity averse if 2000 5L,- > 2000gL,. By transitivity,
2000gL,, > 2000gL, and, thus, L, > L,. This was true for 63.9% of our subjects (Binomial test,
p = 0.024) and the median elicited value of L,, (—€612.50) indeed exceeded the median value of L,
(—€750) (Wilcoxon test, P = 0.012). Hence, we found evidence of ambiguity aversion in the

measurement of L.

Ambiguity aversion also predicts that x7,., the value of x;” measured under risk will exceed x;,, the
value of x;j measured under uncertainty. This follows by transitivity from xfr ~ 200050 >
200050 ~ xlfu. However, this was only true for 44.4% of our subjects and we could not reject the

hypothesis that x; was the same for risk and for uncertainty (Wilcoxon test, P = 0.807).

5.4 The utility for gains and losses

Figure 1, Panel A displays the utility for gains and losses under risk, based on the median data. Figure
1, Panel B shows the same graph for uncertainty. Taken at face value, the utility functions seem
similar. They are consistent with the typical finding of convex utility for losses and concave utility for
gains. Furthermore, the utility function appears considerably steeper for losses than for gains,

indicating loss aversion.

A: Utility under risk B: Utility under uncertainty
Utility Utility
1.007 - 1.007 _
0.751 o =086 0.751 . -
/ o = 0.9}
0.501 % 0501
0251 0251
-2000 2000 4000 6000 2000  -1000 1000 2000 3000 4000
-0/251 Money 0251 Money
/ /
o« =092/ 0% fosol
o =092
/075 /0751
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Figure 1: The utility for gains and losses under prospect theory based on the median data. The figure displays the utility
for gains and losses under prospect theory based on the median responses of our subjects. a."[a"] indicates the estimated
power coefficient for gains [losses]. Panel A displays utility under risk. Panel B displays utility under uncertainty.
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To investigate these patterns more thoroughly, we move to the individual level analysis. Table 2
shows that the classification of subjects according to the shape of their utility function was very
similar for risk and uncertainty and there were no differences in the overall distribution of
classifications between conditions (Fisher’s exact test, P = 0.943). Utility under risk and uncertainty
were related (Kendall’s T = 0.389 for gains and 0.455 for losses, P < 0.001 in both cases) and the
common pattern was that of an S-shaped utility function: concave for gains and convex for losses.
Less than 20% of the subjects behaved according to the traditional assumption in decision theory

that utility is concave throughout.

Table 2: Classification of subjects according to the shape of their utility function

The table classifies the subjects according to the shape of their utility function based on the area under the normalized
utility function. Panel A displays the results under risk. Panel B displays the results under uncertainty.

Panel A: Risk

Losses
Gains Concave Convex Linear Total
Concave 13 31 1 45
Convex 15 8 1 24
Linear 2 0 1 3
Total 30 39 3 72
Panel B: Uncertainty

Losses
Gains Concave Convex Linear Total
Concave 13 30 0 43
Convex 18 10 2 30
Linear 1 0 0 1
Total 32 40 2 72

The parametric results confirmed the above conclusions. Table 3 shows the estimated power
functions at the individual level. Utility was mostly concave for gains and convex for losses. Under

risk, 32 subjects had S-shaped utility. Under uncertainty, this was the case for 30 subjects.

Table 3: Summary of individual parametric fittings of utility for gains

The table depicts the results of fitting power functions on each subject’s choices individually. Shown are the median and
interquartile range (IQR) for the resulting estimates.

Risk Uncertainty
Gains Losses Gains Losses
Median 0.857 0.924 0.937 0.898
IQR [0.616-1.062] [0.649-1.154] [0.716-1.188] [0.675-1.356]

Wilcoxon signed rank tests on these power function estimates indicated that there was no difference

in curvature for losses between risk and uncertainty (P = 0.866). There was some indication that
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utility for gains was more concave under risk (P = 0.027).° The power coefficients of utility under risk
and under uncertainty were moderately correlated: Kendall's T was 0.373 for gains and 0.423 for
losses.

Figure 2 shows the relationship between individual estimates for the power coefficients under risk
and uncertainty. The dashed lines correspond to the case where subjects have exactly the same
coefficients in the two domains. Most estimates were relatively close to the dashed lines and there

was no strong indication that subjects had different curvature under risk than under uncertainty.

A: Curvature for gains B: Curvature for losses
Uncertainty Uncertainty
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Figure 2: The relationship between individual power coefficients under risk and uncertainty. Panel A displays the power
coefficients for gains. Panel B displays the power coefficients for losses. Subjects who had a power coefficient in excess of
2.5 are not shown in the graphs (4 for gains, 7 for losses). The dashed lines correspond to the case where subjects had
exactly the same coefficients under risk and uncertainty.

5.5. Loss Aversion

Figure 3 displays the relationships between the medians of xj+ and —x;" under risk and under
uncertainty. An advantage of our method is that it immediately reveals that there is loss aversion in
the sense of Kahneman and Tversky (1979) when xj+ > —xj_.7 Hence, there is no need to measure

the entire utility function to obtain insight into the presence or absence of loss aversion. As Figure 3

® The difference was no longer significant if we restrict attention to the 58 subjects who never violated
stochastic dominance.

" For a given j, xj and —x;" have the same utility by construction, U(x]*) = —U(x]-_), and, thus, x;" > —x;
implies that U(x]*) <—U(—xj+), consistent with Kahneman and Tversky’s definition of loss aversion

(U(x) < =U(—x) forall x>0).
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clearly shows, —x;” was below x]-+ for all j, both under risk and under uncertainty. An estimate of

the degree of loss aversion is obtained by regressing the x]-+ on (—xj') .The B's in Figure 3 display
the coefficients from this regression. Both B's (for risk and uncertainty) were different from unity (P
< 0.001) and the values that we obtained were close to those observed previously for risk. We could
not reject the hypothesis that the values of § were the same for risk and uncertainty (P = 0.431),

which can be taken as an indication that loss aversion was similar under risk and uncertainty.

A: Loss aversion under risk B: Loss aversion under uncertainty
Gains Gains
6000 1 4000 1 A
p=2.32
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A 1000 7
1000 1
0 # r r r r r ! 0 # r r r !
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000
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Figure 3: The relationship between median gains and median losses with the same absolute utility. Panel A displays the
relationship between median gains and losses under risk. Panel B displays the same relationship under uncertainty. The
dashed line corresponds to the case where gains and losses of the same absolute utility would be of equal size. The straight
line with slope B corresponds to the best fitting linear equation through all points.

Moving to the individual level, we found that x]-+ > —x; for all j (Wilcoxon tests, all P < 0.001).
Furthermore, xf/—xj_ did not differ between risk and uncertainty for any j (Wilcoxon tests, all P >

0.254).

Table 4 shows the results of the individual analyses of loss aversion based on Kahneman and
Tversky’s (1979) and Kébberling and Wakker’s (2005) measures. The table clearly shows evidence of
loss aversion, irrespective of the definition used and regardless of whether we took response errors
into account. According to both definitions, the median loss aversion coefficients for risk and
uncertainty did not differ (Wilcoxon test, P > 0.257 in both tests) and were moderately correlated

(Kendall’'s t>0.368, P < 0.001 in both tests).
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Table 4: Results under the various definitions of loss aversion
The table depicts the results under the two definitions of loss aversion for both risk and uncertainty. The table displays how
the coefficient is defined and the number of loss averse, gain seeking, and loss neutral subjects in both conditions. The
numbers in parentheses for Kahneman and Tversky’s definition correspond with the case where response errors are not
taken into account. Furthermore, the table depicts the median and interquartile range (IQR) for each measure of loss
aversion under both definitions.

Definition Coefficient Condition Median [IQR] Loss averse  Gain seeking Loss neutral
—U(=%)  Risk [ 055 59] o e N
Kahneman and Tversky (1979) U(x) . ' 2.’48. 54(50) 16(10) 0(0)
Uncertainty [1.10, 7.16]
. 1.86
Kébberling and Wakker (2005) x—1+_ ek [1'026'01(1)'47] * . ’
—X1 Uncertainty [1'21" 6.50] 57 14 1

Finally, the two measures of loss aversion were substantially correlated. For risk, Kendall’s T was
0.740 and for uncertainty it was 0.799 (all P < 0.001 in both cases). It is comforting to observe that
these two distinct measures, one of a local nature and relying on a single kink in the slope of the
utility function, and the other global and relying on different absolute utilities associated with the
same absolute money amounts in the positive and negative domain, showed a high degree of

consistency in classifying subjects.

5.6 Reflection

The aggregate findings reported earlier suggest that the power coefficients were similar in the gain
and loss domains. This implies that the utility for losses is the mirror image of the utility for gains and
is referred to as reflection.? It is of interest to test whether reflection also held at the individual level.
Practically, this would allow us to infer utility for both gains and losses by only measuring it in one of
these domains. Theoretically, it would provide support for the idea that utility in both domains is
caused by the same psychophysical response to changes relative to the reference point. Reflection is
a central result in Tversky and Kahneman (1992) and is widely adopted in theoretical and empirical

analyses based on prospect theory (e.g. Barberis et al. 2001).

®Reflection is also defined as risk [ambiguity] attitudes for losses being the mirror image of risk [ambiguity]
attitudes for gains. As risk [ambiguity] attitudes are jointly determined by utility and event weighting under
binary PT, it is clear that this definition differs from the one we use here.
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Figure 4: The relationship between individual power coefficients for gains and losses. Panel A displays the power
coefficients under risk. Panel B displays the power coefficients under uncertainty. Subjects who had a power coefficient in
excess of 2.5 are not shown in the graphs (6 for risk, 9 for uncertainty). The dashed lines correspond to the case where
subjects had exactly the same coefficients for gains and losses.

We found little indication that reflection should be rejected. Based on the area measure, there was
some, albeit marginal, difference in curvature between gains and losses (Wilcoxon test: P = 0.067).
For uncertainty, there was no difference (Wilcoxon test, P = 0.724). Reflection also implies that the
power coefficients for gains and losses should be identical. We could not reject this hypothesis,

neither for risk (Wilcoxon test: P = 0.128) nor for uncertainty (P = 0.814).

On the other hand, both the area measure and the power coefficients, were only slightly correlated
under uncertainty, and moderately correlated under risk. For the area measure, Kendall’s Tt was 0.317
under risk (P < 0.001), and 0.191 under uncertainty (P = 0.018). For the power coefficients, Kendall’s
T was 0.325 under risk (P < 0.001), and 0.231 under uncertainty (P = 0.004). Figure 5 displays the
relation between the power coefficients for both risk and uncertainty. The straight line corresponds
to reflection. Both for risk and for uncertainty, reflection approximately held for most subjects, but

for some it was a poor working hypothesis, particularly under uncertainty.

6. Discussion

Ambiguity models differ in whether they allow different utility functions for risk and uncertainty.

Under binary prospect theory, which includes the multiple priors models and prospect theory as
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special cases, utility is independent of the source of uncertainty and, hence, the same for risk and
uncertainty. Ambiguity aversion is modeled through a difference in event weighting. We tested
empirically whether the assumption of identical utility functions is justified and obtained support for
it. We could not reject the hypothesis that utility and loss aversion were the same under risk and
under uncertainty. We also obtained convincing evidence for reference-dependence: utility was
concave for gains, but convex for losses and there was substantial loss aversion. Finally, the elicited
standard sequences were similar for different stimuli supporting the central condition underlying

binary prospect theory (Kébberling and Wakker 2003), which had not been tested before.

Our findings pose a descriptive challenge for models that explain ambiguity aversion through a
difference in utility curvature between risk and uncertainty alone, like the popular smooth ambiguity
model. We observed that standard sequences were similar for risk and uncertainty. In Appendix C
we show that this implies under the smooth model that the utility function under uncertainty cannot
be a concave or convex transformation of the utility function under risk, even on small preference
intervals. Hence, the transformation function has an irregular shape, which complicates its use in

applications.

It is interesting that loss aversion under risk and under uncertainty were similar. If loss aversion
reflects the psychological intuition that losses loom larger than gains then one would expect that
measurements of loss aversion are related across domains. Previous evidence of this correlation
gave mixed results. Gaechter et al. (2007) found a positive correlation between loss aversion in a
risky and in a riskless task, but Abdellaoui et al. (forthcoming) found that loss aversion under risk and
loss aversion in intertemporal choice were uncorrelated. Several studies have found that loss
aversion is fickle and subject to framing (e.g. Novemsky and Kahneman 2005, Ert and Erev 2008,
Abdellaoui et al. forthcoming). We found that loss aversion was stable under risk and uncertainty if

the elicitation method is held constant.

In many decisions probabilities are unknown. People are often not neutral towards ambiguity and it
is often important to take ambiguity attitudes into account. Our study contributes to the application
of ambiguity models in empirical studies and decision analysis by providing a new parameter-free
method to measure utility and loss aversion under uncertainty that is robust to event weighting and
that can easily be implemented. Our method extends the trade-off method by allowing for standard
sequences that contain both gains and losses and that go through the reference point. It provides a
straightforward way of exploring whether decision makers are loss averse without the need to elicit
the entire utility function. As stage 1 of our method shows, three elicitations suffice to measure loss

aversion in the sense of Kébberling and Wakker (2005) and with a few more measurements loss
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aversion in the sense of Kahneman and Tversky (1979) can be verified.

Our main conclusions, that both utility and loss aversion were the same for risk and for uncertainty,
were not caused by the fact that subjects faced the same stimuli for risk and uncertainty. A simple
heuristic that subjects might have used was to simplify the uncertain decision task by assuming that
the probability of their preferred color in the ambiguous urn was %. Then, the decisions under risk
and uncertainty would be the same and our conclusions would naturally follow. Our data did not
corroborate this hypothesis. The value of the loss L stated in the first stage of our method was
significantly lower under ambiguity (Wilcoxon test, P < 0.001), consistent with ambiguity aversion.
Consequently, the subsequent choices that subjects faced were markedly different for risk and
uncertainty. Even though the choices were different, the obtained utilities were similar for risk and

for uncertainty.

An easy response strategy in the trade-off method is to let the outcomes of the standard sequence
increase by the difference between the gauge outcomes (£ and £ in the sequence of gains G and g
in the sequence of losses). This would bias the results in the direction of linear utility. We checked

for this heuristic but found little evidence to support it, even allowing for response error.

The trade-off method is chained in the sense that previous responses are used in the elicitation of
subsequent choices. Chaining may lead to error propagation, where errors made in one particular
choice affect later choices. We checked for the impact of error propagation using the simulation
methods developed by Bleichrodt and Pinto (2000) and Abdellaoui et al. (2005). In both simulations,
we confirmed the conclusions from those studies that the impact of error propagation was
negligible.® We also repeated the parametric analysis of utility accounting for serial correlation in the
error terms.’® The estimates were identical to the ones reported in Section 5. Hence, we conclude

that the chained nature of our measurements had no noticeable impact on the results either.

Let us finally discuss incentives. We used hypothetical outcomes because we wanted to detect utility
curvature. For small money amounts little utility curvature is usually observed and the equality of
utility for risk and for uncertainty would then automatically follow. A second reason for not using
real incentives is that we wanted to include losses. Ambiguity attitudes differ between gains and
losses and loss aversion is important in explaining risk and ambiguity attitudes. Because we used
substantial losses, we could not implement real incentives: it is impossible to find subjects willing to

participate in an experiment in which they can lose substantial amounts of money. Given that all but

® Bleichrodt et al. (2010) also concluded that error propagation was negligible in their measurements using the
trade-off method.

' We assumed that the error terms followed an AR(1) process €; = p€r_q + Uy with u; normally distributed
with expectation 0 and variance 2 and estimated this using generalized least squares.
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one of the questions involved losses, we could not play out one of the gain questions for real either.
Subjects would know immediately which question would be played out for real. The literature on the
importance of real incentives is mixed. Most studies found that for small to modest stakes there was
little or no effect of using real instead of hypothetical choices for the kind of tasks that we asked our
subjects to perform (Bardsley et al. 2010). Therefore, we concluded that the limited potential
advantage of using real incentives did not outweigh the advantages of being able to use larger

outcomes and losses.

7. Conclusion

We performed a critical test of ambiguity models, such as multiple priors and prospect theory, that
assume that utility is source-independent and the same for risk and for uncertainty. We verified this
assumption and found support for it, suggesting that utility primarily reflects attitudes towards
outcomes. Our findings pose a descriptive challenge for models that capture ambiguity attitudes
through a difference in utility between risk and uncertainty. Moreover, we found that reference-
dependence of utility was important both in modeling attitudes towards risk and in modeling
attitudes towards ambiguity. Utility was S-shaped, concave for gains and convex for losses and we
observed clear evidence for loss aversion with most subjects being loss averse and the median loss

aversion coefficients varying between 1.86 and 2.48.

To apply ambiguity models in practical decision analysis requires methods to measure their
parameters. It is often believed that this is complex. We present an easily applicable method to
measure utility and loss aversion under uncertainty. Our method makes the trade-off method robust
to sign-dependence and allows the elicitation of standard sequences that include gains, losses, and
the reference point. It requires no simplifying assumptions about utility and event weighting and
takes account of heterogeneity in individual preferences. We hope that our method will foster the

use of ambiguity models in empirical research and practical applications.
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Appendix

A: Display of the experimental questions.

Figure Al. Choice screen under uncertainty.

What is your most preferred alternative?

Altarnative A Alamativa B
— o€ T, 2000€
Black o Black +2000€

Figure A2. Scrollbar screen under uncertainty.

£
Use tha scrolbar to refine your chaice.
Abormative A Azormative B
— 0€ = 2000€
Black o Black 1250



Figure A3. Confirmation screen under uncertainty.

allt] ®

Plaaze confirm that for these values you ars indifferent betwean altematives A and B

Altarnative A Alemative B
2000€
Red o Red
Black o€ Black 12008
Concel

B: Three illustrations of the bisection method under risk.

Offered choices in Offered choices in Offered choices in

elicitation L elicitation x; elicitation x5
1 0 vs. (2000, 0.5; -2000)  (2000,0.5;0) vs. 1000  (300,0.5;-200) vs. (800,0.5;-700)
2 0vs. (2000, 0.5; -1000)  (2000,0.5;0) vs. 500 (300,0.5;-200) vs. (800,0.5;-450)
3 0vs. (2000, 0.5; -1500)  (2000,0.5;0) vs. 750  (300,0.5;-200) vs. (800,0.5;-325)
Slider  Start value: -1250 Start value: 625 Start value: -388

Interval: [-2000,-500] Interval: [250,1000] Interval: [-576,-200]

C: Proof that equal utility midpoints for risk and uncertainty imply ambiguity neutrality or volatile
ambiguity attitudes under the smooth model.

In our experiment we ask indifferences xj-"EL ~xi

1‘15{)' Under the smooth model this implies:

Y memU(xh) + (1 —pHUW) - T mepU(x,) + (1 — p)U@D) =

Y mie(iU ) + (1= p)U L) - X2 mp(piU(xo ) + (1 —p)HU®) (A1)

Or
Z (e U(x) + (1 —p)UK)) — @ (piU(xj*-l)

=1

+(1-p)U®)) =

mme@UGD) + (1= pdU) — ¢ (PU(x ) + (1= p)U)) (A2)



Suppose utility midpoints are the same for risk and uncertainty. Because the m; sum to one, we also

have
S miU () + (1= pdU@) = (paU (x) + (1 - p)U(@))) =

YR m UG + (1 -pHUK)) - (piU(x(;r) +(1- Pi)U(f))) (A3)
If ¢ is strictly concave or strictly convex (A2) and (A3) can never be jointly true. Hence, either ¢ is

linear or it has both convex and concave parts on any interval [x]-+_1,xj+],j =1,.., kg
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