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Abstract. In this paper we explore the problem of Nash implementation providing
new sufficient conditions called I-monotonicity and I-weak no-veto power. Firstly, we
show that these conditions together with unanimity are sufficient for the implementation
of social choice correspondences (SCCs) in Nash equilibria. Secondly, we prove that, in
the domain of the private good economies with single-plateaued preferences, a solution
of the problem of fair division is Nash implementable if and only if it satisfies Maskin
monotonicity. We provide examples of SCCs satisfying or not Maskin monotonicity.
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1 Introduction

The goal of the implementation theory is to study the problem of the asymmetric
information between a planner (or social designer) and a set of individuals in a society.
The planner hopes to maximize an objective function, called social choice correspondence
(or rule), that represents the welfare of a society and provides the desired outcomes
but the social designer confronts individuals who state the false preferences on the
outcomes. So that the agents reveal their true preferences, the social designer organizes
a non-cooperative game among agents. If the payment with the solution of this game
corresponds to the socially desired alternative and vice versa, we say that the social choice
correspondence (SCC) which give this socially desired alternative is implementable in the
solution of the game. To achieve this objective, some conditions should be imposed on
SCCs. Thus, Maskin (1977, 1999) was the first to give the necessary and almost sufficient
conditions for the implementation of social choice correspondences in Nash equilibria. For

∗Corresponding author. Tel.:+212 6 63 81 33 42. E-mail addresses: doghmi@insea.ac.ma,
ahmeddoghmi@hotmail.com (A.Doghmi), abderrahmane.ziad@unicaen.fr (A. Ziad)
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necessity, he showed that any Nash implementable SCC must satisfy a condition known
now as Maskin monotonicity. This condition stipulates that if an alternative a is socially
chosen in a profile R and if the alternatives ranked below a for all agents remain ranked
below it (in large sense) in a new profile R′, then the alternative a must be socially chosen
in R′. Maskin proved that this condition alone is not sufficient. Thus, for sufficiency,
he gave an additional condition called, no-veto power. This condition requires that if
an alternative is ranked at the top for all agents except one, then this alternative must
be socially chosen. Maskin showed that if there is at least three players participating at
a mechanism, then any SCC satisfying Maskin monotonicity and no-veto power can be
implemented in Nash equilibria.

However, the no-veto power condition is not checked in many economic and political
applications. Sjöström (1991) and Danilov (1992) provided a full characterization
for Maskin’s result. Yamato (1992) generalized Danilov’s result proposing an elegant
condition for sufficiency called strong monotonicity1.

Thomson (1990, 2010) applied these theoretical results in private good economies with
single-peaked preferences. He showed that, only Pareto correspondence satisfies no-veto
power, and so it is the unique correspondence which can be implemented by Maskin’s
Theorem while many other correspondences are implemented by appealing to strong
monotonicity and Sjöström’s algorithm (1991). Doghmi and Ziad (2008a) reexamined
Maskin’s result by providing new sufficient conditions. By applying these conditions to
the domain of the private good economies with single-peaked preferences, Doghmi and
Ziad (2008b) proved that all unanimous correspondences satisfying Maskin monotonicity
can be implemented in Nash equilibria. Thus, by this very easy conditions compared
to the different techniques used by Thomson (1990, 2010), they solved definitively the
problem of implementation in the domain of the private good economies with single-
peaked preferences. Now, the question is: What happens about Nash implementability
in private good economies when preferences are single-plateaued?

To resolve this problem, we propose new sufficient conditions called I-monotonicity
and I-weak no-veto power and we prove that this conditions together with unanimity are
sufficient for Nash implementation. By applying this result to private good economies
with single-plateaued preferences, we show that I-monotonicity alone is sufficient and
becomes equivalent to Maskin monotonicity. We find that Maskin monotonicity alone is
necessary and sufficient to implement the solutions of the problem of fair division in this
domain. Surprisingly, we find that Pareto correspondence and its intersections with the
no envy correspondence and with the individually rational correspondence from equal
division do not satisfy Maskin monotonicity and so they are not Nash implementable.

The rest of this paper is organized as follows. Section 2 reviews the related literature
to domains of single-plateaued preferences. In Section 3, we introduce notations and
definitions. In Section 4, we provide new sufficient conditions. In Section 5, we give
applications in the domain of private good economies with single-plateaued preferences.
Section 6 provides our concluding remarks.

1Maskin’s results are also extended by Moore and Repullo (1990), Dutta and Sen (1991) and several
other authors that are not cited here.
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2 Related literature to domains of single-plateaued

preferences

By applying families of preference profiles that satisfy some special conditions, many
positive results have been obtained in economic and political sciences. Perhaps the very
known among these conditions is the notion of single peakedness mentioned in the above
section. This notion is introduced by Black (1948) in social choice theory. It requires
that each agent has a unique best alternative. However, although single-peakedness is a
domain restriction that allows to have very nice and interesting results, this restriction
on individual preferences is very strong. Because the fact that to have only one maximal
element, without admitting the indifference with at least one other alternative, is not
always natural. Thus, many authors have explored the consequences of admitting more
than one maximal element over individual preferences. They have expanded the domain
of single-peakedness into a domain well-known now as single-plateauedness, which allows
agents to be indifferent among several best elements. Assume that there is an amount
Ω ∈ R++ of certain infinitely divisible good that is to be allocated among a set of n
agents. The preference of each agent i is represented by a continuous and single-plateaued
preference relation Ri over [0,Ω] as illustrated in figure 1.

Figure 1: Single-plateaued preferences.

This domain has been explored by several authors in social choice theory and games
theory. The more recent work is that of Bossert and Peters (2013). They examined
the notion of single-plateauedness in a choice-theoretic setting. They showed that the
single-plateaued choice is characterized by independence of irrelevant alternatives and a
continuity properties. We can cite other many applications; for example, Moulin (1984)
enlarged the domain of single-peakedness to that of single-plateauedness in order to
characterize a class of generalized Condorcet-winners choice functions. Berga (1998, 2006)
explored the problem of the provision of one pure public good. He characterized the class
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of strategy-proof voting schemes on single-plateaued preferences in generalizing Moulin’s
characterization (1980) of strategy-proof voting schemes on single-peaked preferences.
Ehlers (2002) considered private good economies with single-plateaued preferences where
a collective endowment of a perfectly divisible commodity has to be allocated among
a finite set of agents. He characterized the class of sequential-allotment solutions in
enlarging the family of solutions studied by Barberà , Jackson and Neme (1997). Barberà
(2007) introduced the notion of single-plateaued preference profiles in extending Black’s
result (1948) and Moulin’s result (1980,1984). Berga and Moreno (2009) are interested
in the problem of the provision of one pure public good when agents have either single-
plateaued preferences or single-peaked preferences over the set of alternatives. They
studied the relationships between different non-manipulability notions under these two
domains including the most important concept in the implementation theory: Maskin
monotonicity.

This paper attempts to study the problem of implementation theory in the domain
of single-plateaued preferences. In this area, a few works have addressed this issue. To
our knowledge, only in a recent work, but in different purposes, Lombardi and Yoshihara
(2011) have examined the implementability of the Pareto correspondence in a model of the
private good economies when preferences are single-plateaued. Using Moore and Repullo’s
conditions (1990), they showed that this correspondence becomes not implementable
when the domain of individual preferences is enlarged from single-peakedness to single-
plateaued preference profiles. In our work, we use simple new conditions and we study
the implementability of a family of the solutions of the problem of fair division.

3 Notations and definitions

Let A be a set of alternatives, and let N = {1, ..., n} be a set of individuals, with generic
element i. Each individual i is characterized by a preference relation Ri defined over
A, which is a complete, transitive, and reflexive relation in some class <i of admissible
preference relations. Let < = <1 × ... × <n. An element R = (R1, ..., Rn) ∈ < is a
preference profile. The relation Ri indicates the individual’s i preference. For a, b ∈ A,
the notation aRib means that the individual i weakly prefers a to b. The asymmetrical
and symmetrical parts of Ri are noted respectively by Pi and ∼i.
A social choice correspondence (SCC) F is a multi-valued mapping from < into 2A \{Ø},
that associates with every R a nonempty subset of A. For all Ri ∈ <i and all a ∈ A, the
lower contour set for agent i at alternative a is noted by: L(a,Ri) = {b ∈ A | aRib}. The
strict lower contour set and the indifference lower contour set are noted respectively by
LS(a,Ri) = {b ∈ A | aPib} and LI(a,Ri) = {b ∈ A | a ∼i b}.

A mechanism (or form game) is given by Γ = (S, g) where S = Πi∈NSi; Si denotes
the strategy set of the agent i and g is a function from S to A. The elements of S are
denoted by s = (s1, s2, ..., sn) = (si, s−i), where s−i = (s1, ..., si−1, si+1, ..., sn). When
s ∈ S and bi ∈ Si, (bi, s−i) = (s1, ..., si−i, bi, si+1, ..., sn) is obtained after replacing si by
bi, and g(Si, s−i) is the set of results which agent i can obtain when the other agents
choose s−i from S−i = Πj∈N,j 6=iSj.
A Nash equilibrium of the game (Γ, R) is a vector of strategies s ∈ S such that for any
i, g(s)Rig(bi, s−i) for all bi ∈ Si, i.e. when the other players choose s−i, the player i
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cannot deviate from si. Given N(g,R, S) the set of Nash equilibria of the game (Γ, R),
a mechanism Γ = (S, g) implements an SCC F in Nash equilibria if for all R ∈ <,
F (R) = g(N(g,R, S)).
We say that an SCC F is implementable in Nash equilibria if there is a mechanism which
implements it in these equilibria.
A SCC F satisfies unanimity if for any a ∈ A and any R ∈ <, if for any i ∈ N ,
L(a,Ri) = A, then a ∈ F (R).

Maskin (1977/1999) introduced the following conditions on F to characterize the
SCC’s that are implementable in Nash equilibria.
Monotonicity : A SCC F satisfies monotonicity if for all R,R′ ∈ <, for any a ∈ F (R), if
for any i ∈ N , L(a,Ri) ⊆ L(a,R′i), then a ∈ F (R′).
No-veto power : A SCC F satisfies no-veto power if for i, R ∈ <, and a ∈ A, if
L(a,Rj) = A for all j ∈ N\{i}, then a ∈ F (R).
Maskin (1977/1999) proved that any Nash implementable correspondence satisfies Maskin
monotonicity and for at leat three players any social choice correspondence satisfies
Maskin monotonicity and no-veto power is Nash implementable.

Yamato (1992) generalized the Danilov’s result (1992) by proposing a strong version of
monotonicity for weak preferences. To define this property, let us introduce the following
notion. Let i be a player and B ⊂ A. An alternative b ∈ B is essential for i in set B if
b ∈ F (R) for some preference profile R such that L(b, Ri) ⊂ B. The set of all essential
elements is denoted as Essi(F,B).
Strong monotonicity : A SCC F satisfies strong monotonicity if for all R,R′ ∈ < and for
all a ∈ F (R), if for all i ∈ N , Essi(F,L(a,Ri)) ⊂ L(a,R′i), then a ∈ F (R′).
Yamato (1992) proved that any SCC satisfying strong monotonicity is Nash implementable
with at least three agents. This condition becomes necessary under certain mild condition
imposed on admissible preferences.

Doghmi and Ziad (2008a) reexamined Maskin’s result (1977/1999) by introducing the
following new sufficient conditions.
Strict monotonicity : A SCC F satisfies strict monotonicity if for all R,R′ ∈ <, for any
a ∈ F (R), if for any i ∈ N , LS(a,Ri) ∪ {a} ⊆ L(a,R′i), then a ∈ F (R′).
Strict weak no-veto power : A SCC F satisfies strict weak no-veto power if for i, R ∈ <,
and a ∈ F (R), if for R′ ∈ <, b ∈ LS(a,Ri) ⊆ L(b, R′i) and L(b, R′j) = A for all j ∈ N\{i},
then b ∈ F (R′).
Doghmi and Ziad (2008a) showed that, in addition to unanimity, the conditions of strict
monotonicity and strict weak no-veto power are sufficient for an SCC to be implementable.

4 Sufficient Conditions

Now, we present new sufficient conditions called I-monotonicity and I-weak no-veto
power. We show that these conditions together with unanimity are sufficient for the
implementation of social choice correspondences in Nash equilibria as long as there are
at least three players.

We begin by defining a subset of indifferent options.

5



Definition 1 (Indifferent options subset)
For any agent’s i preference Ri, any alternative a ∈ F (R), for some singleton “operator”
{o} ∈ LI(a,Ri) with o 6= a, the indifferent options subset is the subset I(a, o, Ri) = {b ∈
A \ {a, o} s.t. a ∼i b ∼i o}.

This subset denotes, according to the operator o, the set of all elements in the
indifference class of a (not including a and o) under Ri provided that the indifference
class of a contains at least three alternatives. To illustrate this subset, suppose that we
have the set of alternatives A = {a, b, c, d, e} with a ∈ F (R), and an agent i’s preference

Ri ∈ <i on A such that,

Ri

e
a,b,c,d

f

We have LI(a,Ri) = {a, b, c, d} and so the operator {o} can be b, c or d. Therefore we
have either I(a, o = b, Ri) = {c, d} or I(a, o = c, Ri) = {b, d} or I(a, o = d,Ri) = {b, c}.

For this subset of indifferent options, we give the following remark.

Remark 1 I(a, o, Ri) 6= ∅ if |LI(a,Ri)| ≥ 3, otherwise I(a, o, Ri) = ∅.

To define our first sufficient condition called I-monotonicity, we do not need to consider
all elements of the indifference class LI(a,Ri) \ {a} , but there should simply be one
element of this class (∃o ∈ LI(a,Ri) \ {a}) for which the inclusion of the condition is
checked. This element can be different from a player to another.

Definition 2 (I-monotonicity)
A SCC F satisfies I-monotonicity if for all R,R′ ∈ <, for any a ∈ F (R), if for any i ∈ N ,
LS(a,Ri) ∪ I(a, o, Ri) ∪ {a} ⊆ L(a,R′i) for some o ∈ LI(a,Ri) \ {a}, then a ∈ F (R′).

Roughly speaking, I-monotonicity means that if an alternative a is socially chosen in
a profile R and if, for all agents, the alternatives set ranked strictly below a (including
a) in addition to the indifferent options subset remain ranked below a (in large sense)
in a new profile R′, then the alternative a must be socially chosen in R′. Generally,
I-monotonicity implies Maskin monotonicity.

Example 1: A = {a, b, c, d, e, f}, N = {1, 2, 3} and < = {R,R′} are defined by:

R: R1 R2 R3

d,e b b,d
a,c c a,c
f a,d,f f
b e e

R′: R′1 R′2 R′3
a,b,c,d,e b,d a,b

f c c,d
a,e,f e,f

F (R) = {a, f} F (R′) = {a, b, c}

6



We have f ∈ F (R) and for player 1 we have I(f, o = ∅, R1) = {∅}, and hence
LS(f,R1) ∪ I(f,R1) ∪ {f} = {b, f} * L(f,R′1) = {f}.

In the inverse sense, we have b ∈ F (R′) and b /∈ F (R). For players 2 and
3, we have LS(b, R′i=2,3) ∪ I(b, o = ∅, R′i=2,3) ∪ {b} ⊆ L(b, Ri=2,3). For player 1,
we have LI(b, R′1) \ {b} = {a, c, d, e}, hence we should have the non-inclusion (i.e.,
LS(b, R′1) ∪ I(b, o, R′1) * L(b, R1)) for all o ∈ LI(b, R′1) \ {b}. We have either
I(b, o = a,R′1) = {c, d, e} or I(b, o = c, R′1) = {a, d, e} or I(b, o = d,R′1) = {a, c, e}
or I(b, o = e, R′1) = {a, d, c}. If we have I(b, o = a,R′1) = {c, d, e}, LS(b, R′1) ∪
I(b, a, R′1) ∪ {b} = {b, c, d, e, f} * L(b, R1) = {b}. If we have I(b, o = c, R′1) = {a, d, e},
LS(b, R′1)∪I(b, c, R′1)∪{b} = {a, b, d, e, f} * L(b, R1) = {b}. If we have I(b, o = d,R′1) =
{a, c, e}, LS(b, R′1) ∪ I(b, d, R′1) ∪ {b} = {a, b, c, e, f} * L(b, R1) = {b}. If we have
I(b, o = e, R′1) = {a, d, c}, LS(b, R′1) ∪ I(b, e, R′1) ∪ {b} = {a, b, c, d, f} * L(b, R1) = {b}.

Finally, we have c ∈ F (R′) and c /∈ F (R). For players 2 and 3, we have LS(c, R′i=2,3)∪
I(c, o = ∅, R′i=2,3)∪{c} ⊆ L(c, Ri=2,3). For player 1, we have LI(c, R′1)\{c} = {a, b, d, e},
hence we should have the non-inclusion (i.e., LS(c, R′1) ∪ I(c, o, R′1) * L(c, R1)) for all
o ∈ LI(c, R′1)\{c}. We have either I(c, o = a,R′1) = {b, d, e} or I(c, o = b, R′1) = {a, d, e}
or I(c, o = d,R′1) = {a, b, e} or I(c, o = e, R′1) = {a, b, d}. If we have I(c, o =
a,R′1) = {b, d, e}, LS(c, R′1) ∪ I(c, a, R′1) ∪ {c} = {b, c, d, e, f} * L(c, R1) = {a, b, c, f}.
If we have I(c, o = b, R′1) = {a, d, e}, LS(c, R′1) ∪ I(c, b, R′1) ∪ {c} = {a, c, d, e, f} *
L(c, R1) = {a, b, c, f}. If we have I(c, o = d,R′1) = {a, b, e}, LS(c, R′1) ∪ I(c, d, R′1) ∪
{c} = {a, b, c, e, f} * L(c, R1) = {a, b, c, f}. If we have I(c, o = e, R′1) = {a, b, d},
LS(c, R′1) ∪ I(c, e, R′1) = {a, b, c, d, f} * L(c, R1) = {a, b, c, f}. Thus, F satisfies I-
monotonicity.

Now, we introduce our second condition, called I-weak no-veto power.

Definition 3 (I-weak no-veto power)
A SCC F satisfies I-weak no-veto power if for i, R ∈ <, and a ∈ F (R), if for R′ ∈ <,
b ∈ LS(a,Ri) ∪ I(a, o, Ri) ⊆ L(b, R′i) and L(b, R′j) = A for all j ∈ N\{i}, for some
o ∈ LI(a,Ri) \ {a}, then b ∈ F (R′).

In words, I-weak no-veto power means that if an alternative a is socially chosen in a
profile R and for an agent i, if an alternative b, belongs to the subset of the alternatives
which are ranked strictly below a or it belongs to the indifferent options subset, becomes
weakly preferred to these alternatives in a new profile R′ for i, and it will be ranked at
the top for all j 6= i, then the alternative b must be socially chosen in R′.

In example 1, the I-weak no-veto power condition is checked. We have in profile
R, a ∈ F (R) and for player 1, LI(a,R1) = {a, c, }; therefore | LI(a,R1) < 3 | and so
I(a, o = d,R1) = ∅. We have b ∈ LS(a,R1) ∪ I(a, o, R1) = {b, f} ⊆ L(b, R′1) = A. For
players 2 and 3, L(b, R′i=2,3) = A and so b ∈ F (R′) as required. In the inverse sense, we
have L(b, Ri=2,3) = A, for a ∈ F (R′), we have for player 1, LI(a,R′1) \ {a} = {b, c, d, e}
and b ∈ LS(a,R′1)∪ I(a, o, R′1) * L(b, R1) for all o ∈ LI(a,R′1) \ {a}. We follow the same
reasoning for the other elements of F (R′).

Remark 2 If I(a, o, Ri) = ∅, then I-monotonicity and I-weak no-veto power become,
respectively, equivalent to strict monotonicity and strict weak no-veto power.
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In private good economies with single-peaked and single-dipped preferences, |LI(a,Ri)| <
3. By Remarks 1 and 2, the condition of I-monotonicity is equivalent to strict
monotonicity and the condition of I-weak no-veto power and strict weak no-veto power
are equivalent in these domains.

In the following theorem, we give our first main result in this paper.

Theorem 1 Let n ≥ 3. If an SCC F satisfies I-monotonicity, I-weak no-veto power and
unanimity, then F can be implemented in Nash equilibria.

Proof. See appendix.

In Example 1, for Maskin’s conditions (1977,1999), while F is monotonic, this SCC
does not satisfy no-veto power. In profile R, alternative b is not chosen by F even if
this alternative is top-ranked by players 2 and 3. For Yamato’s condition (1992), strong
monotonicity is not checked. We have f ∈ F (R), Ess1(F,L(f,R1)) = {f} ⊆ L(f,R′1) =
{f}, Ess2(F,L(f,R2)) = {a, f} ⊆ L(f,R′2) = {a, e, f}, and Ess3(F,L(f,R3)) = {f} ⊆
L(f,R′3) = {e, f}, but f /∈ F (R′). For Doghmi and Ziad’s conditions, F does not satisfy
strict monotonicity. We have c ∈ F (R′), LS(c, R′1)∪{c} = {c, f} ⊆ L(c, R1) = {a, b, c, f},
LS(c, R′2)∪{c} = {a, c, e, f} ⊆ L(c, R2) = {a, c, d, e, f} and LS(c, R′3)∪{c} = {c, e, f} ⊆
L(c, R3) = {a, c, e, f}, but c /∈ F (R). Thus, Maskin’s Theorem, Yamato’s result (1992)
or Doghmi and Ziad’s result (2008 a) are silent about the implementability of F . We
see that the unanimity condition is checked by F and we have showed that F satisfies
I-monotonicity and I-weak no-veto power, and hence is Nash implementable by Theorem
1.

5 Applications to private good economies with single-

plateaued preferences

There is an amount Ω ∈ R++ of certain infinitely divisible good that is to be allocated
among a set N = {1, ..., n} of n agents. The preference of each agent i ∈ N is represented
by a continuous2 and single-plateaued preference relation Ri over [0,Ω] (the asymmetrical
part is written Pi and the symmetrical part ∼i). For all xi, yi ∈ [0,Ω], xiRiyi means that,
for the agent i, to consume a share xi is as good as to consume the quantity yi. A feasible
allocation for the economy (R,Ω) is a vector x ≡ (xi)i∈N ∈ Rn

+ such that
∑

i∈N xi = Ω
and X is the set of the feasible allocations. We note that the feasible allocations set is
X = [0,Ω] × ... × [0,Ω]. Thus, L(x,Ri) = X is equivalent to L(xi, Ri) = [0,Ω]. For the
set L(x,Ri) = X, xRiy for all y ∈ X implies that xiRiyi. Thus, the agents preferences
are defined over individual consumption spaces, not over allocation space. Then the
proprieties of implementation theory, presented in general setup in Section 2, become as
follows. A SCC F satisfies monotonicity if for all R,R′ ∈ <, for any x ∈ F (R), if for any
i ∈ N , L(xi, Ri) ⊆ L(xi, R

′
i), then x ∈ F (R′). A SCC F satisfies I-monotonicity if for

all R,R′ ∈ <, and for any x ∈ F (R), if for any i ∈ N , LS(xi, Ri) ∪ I(xi, zi, Ri) ∪ {xi} ⊆
L(xi, R

′
i) for some z ∈ LI(x,Ri) \ {x}, then x ∈ F (R′). A SCC F satisfies no-veto power

2Continuous here means that if [a, b[∪]b, c] ⊆ L(xi, R
′
i) for some a, b, c, x and R′, then [a, c] ⊆ L(xi, R

′
i).

8



if for i, R ∈ <, and x ∈ X, if L(xj, Rj) = [0,Ω] for all j ∈ N\{i}, then x ∈ F (R). A
SCC F satisfies I-weak no-veto power if for i, R ∈ <, x, y, z ∈ X, and x ∈ F (R), if for
R′ ∈ <, yi ∈ LS(xi, Ri)∪ I(xi, zi, Ri) ⊆ L(yi, R

′
i) and L(yj, R

′
j) = [0,Ω] for all j ∈ N\{i},

for some z ∈ LI(x,Ri) \ {x}, then y ∈ F (R′). A SCC F satisfies unanimity if for any
x ∈ X and any R ∈ <, if for any i ∈ N , L(xi, Ri) = [0,Ω], then x ∈ F (R).

We note that the free disposability of the good is not assumed.
A preference relation Ri is single-plateaued if there are two numbers xi, xi ∈ [0,Ω]

such that xi ≤ xi and for all xi, yi ∈ [0,Ω]: (i) if yi < xi ≤ xi or xi ≤ xi < yi, then xiPiyi;
(ii) We call p(Ri) ≡ [xi, xi] the plateau of Ri, x is the left end-point of the plateau of
Ri, and x is the right end-point. A preference relation Ri is single-peaked if xi = xi.

The class of all single-plateaued preference relations is represented by <sp ⊆ <.
For R ∈ <sp, let p(R) = (p(R1), ..., p(Rn)) be the profile of plateaus (or of preferred
consumptions). A single plateaued preference relation Ri ∈ <spi is described by the
function ri : [0,Ω] → [0,Ω] which is defined as follows: ri(xi) is the consumption of the
agent i on the other side of the plateau which is indifferent to xi (if it exists), else, it is
0 or Ω. Formally, if xi ≤ p(Ri), then, ri(xi) ≥ p(Ri) and xi ∼i ri(xi) if such a number
exists or ri(xi) = Ω otherwise; if xi ≥ p(Ri), then, ri(xi) ≤ p(Ri) and xi ∼i ri(xi) if such
a number exists or ri(xi) = 0 otherwise.

Let us introduce some known correspondences.

No-Envy correspondence, NE, (Foley, 1967). This correspondence selects the
feasible allocations for which each agent prefers his own share than the shares of the other
agents. It is defined as follows: Let R ∈ <sp, NE(R) = {x ∈ X if xiRixj for all i, j ∈ N}.

Individually Rational Correspondence from Equal Division, Ied: This
correspondence selects the feasible allocations for which each agent prefers his own share
to the average one. It is defined as follows: Let R ∈ <sp, Ied(R) = {x ∈ X : xiRi(Ω/n)
for all i ∈ N}.

Pareto correspondence, P : This solution selects the feasible allocations which are
not weakly dominated by an other allocation for all agents and not strictly dominated
for at least one agent. It is defined as follows: Let R ∈ <sp, P (R) = {x ∈ X : @x′ ∈ X
such that for all i ∈ N , x′iRixi, and for some i ∈ N , x′iPixi}.

5.1 Some sufficient conditions and robustness of Maskin monotonicity

In this subsection, we provide our second main result of the paper. We prove that an
SCC in the domain of the private good economies is Nash implementable if and only if it
satisfies Maskin monotonicity. For this, we show that I-monotonicity alone is sufficient
for Nash implementability and becomes equivalent to Maskin monotonicity. To prove
this, we give the following Lemmas.

Lemma 1 Let R,R′ ∈ <sp and x, y, z ∈ X. If the preferences are single-plateaued, yi ∈
LS(xi, Ri)∪I(xi, zi, Ri), and LS(xi, Ri)∪I(xi, zi, Ri) ⊆ L(yi, R

′
i), then L(yi, R

′
i) = [0,Ω].

The proof of Lemma 1 is omitted, it follows the same reasoning in Lemma 1 of Doghmi
and Ziad (2008 b).
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Assumption 1 For some SCC F , for all x ∈ X, there is a profile R ∈ < such that
x ∈ F (R).3

Lemma 2 On a single-plateaued domain, any I-monotonic SCC satisfies unanimity.

Proof. Suppose not. Let x ∈ X and any R̃ ∈ <sp, for any i ∈ N , [0,Ω] = L(xi, R̃i),

and x /∈ F (R̃). By Assumption 1, for all x ∈ X, there is a profile R ∈ < such that

x ∈ F (R) and so for all i ∈ N , LS(xi, Ri) ∪ I(xi, zi, Ri) ∪ {xi} ⊆ [0,Ω] = L(xi, R̃i). By

I- monotonicity, x ∈ F (R̃), a contradiction. Q.E.D.

According to Lemmas 1 and 2, we have the following corollary:

Corollary 1 On a single-plateaued domain, any I-monotonic SCC satisfies I-weak no-
veto power.

Now, we show that I-monotonicity, alone, is sufficient for Nash implementation when
preferences are single-plateaued.

Proposition 1 Let n ≥ 3. In the private good economies with single-plateaued
preferences, any SCC satisfying I-monotonicity can be implemented in Nash equilibria.

Proof. By Lemma 2, Corollary 1 and Theorem 1, the proof is completed as required.
Q.E.D.

We prove that I-monotonicity is equivalent to Maskin monotonicity in the area of
private good economies with single-plateaued preferences.

Proposition 2 In the private good economies with single-plateaued preferences, I-
monotonicity becomes equivalent to Maskin monotonicity.

Proof. Let R,R′ ∈ <sp and x, y ∈ X. Suppose that xi ≤ xi ( similar statements can
be proved for xi > xi). i)⇒, it is clair that LS(xi, Ri) ∪ I(xi, zi, Ri) ∪ {xi} ⊆ L(xi, Ri).
Therefore, I- monotonicity implies Maskin monotonicity. ii) ⇐, in this case, suppose
that LS(xi, Ri) ∪ I(xi, zi, Ri) ∪ {xi} ⊆ L(xi, R

′
i) (1). We have two cases to study.

i) If xi /∈ [xi, xi] then I(xi, zi, Ri) = ∅ and so I-monotonicity becomes strict
monotonicity.

ii) If xi ∈ [xi, xi] and ∃{zi} ∈ p(Ri) s.t. xi < zi < xi, then ∅ 6= I(xi, zi, Ri) =
[xi, xi[∪]xi, zi[∪]zi, xi] and LS(xi, Ri) = [0, xi[∪]xi,Ω]. Thus, by (1), LS(xi, Ri) ∪
I(xi, zi, Ri) ∪ {xi} = [0, zi[∪]zi,Ω] ⊆ L(xi, R

′
i). By the continuity of preferences,

[0,Ω] ⊆ L(x,R′i) and so L(xi, Ri) ⊆ [0,Ω] ⊆ L(x,R′i). Thus, we have the inclusion
of Maskin monotonicity. Q.E.D.

Through propositions 1 and 2, we complete the proof of the second main Theorem of
the paper.

Theorem 2 : Let n ≥ 3. A SCC in the private good economies with single-plateaued
preferences is Nash implementable if and only if satisfies Maskin monotonicity.

To support this result, we give in the following subsection a series of SCCs’ examples
that satisfy or not Maskin monotonicity.

3This assumption is not checked when the SCCs are constants like the equal division correspondence.
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5.2 Examples of SCC’s satisfying or not Maskin monotonicity

In this subsection, we check whether or not the correspondences cited above and their
intersections can be implemented in private good economies with single-plateaued
preferences by Theorem 2. We begin by examining the implementability of the no-envy
correspondence.

Proposition 3 In the private good economies with single-plateaued preferences, the No-
Envy correspondence satisfies Maskin monotonicity.

The proof of this proposition is omitted. This, because the no-envy correspondence
satisfies Maskin monotonicity in general domain and so this correspondence obviously
satisfies this condition in the restricted domain. The same for the next Proposition,
we omit the proof; the individually rational correspondence from equal division satisfies
Maskin monotonicity in restricted domain while this correspondence is monotonic in
general domain.

Proposition 4 In the private good economies with single-plateaued preferences, the
Individually Rational Correspondence from Equal Division satisfies Maskin monotonicity.

The intersection of the no-envy correspondence with the individually rational
correspondence from equal division satisfies Maskin monotonicity as shown in the
following proposition.

Proposition 5 The (NE ∩ Ied) correspondence satisfies Maskin monotonicity.

Since Maskin monotonicity is stable under intersection, the proof of this Proposition
is immediate from Propositions 2 and 3.

The Pareto correspondence does not satisfy Maskin monotonicity in general domain.
In the next, we examine the implementability of this correspondence in the domain of
the private good economies with single-plateaued preferences. The following proposition
shows that this correspondence does not satisfy Maskin monotonicity and hence not Nash
Implementable.4

Proposition 6 In the private good economies with single-plateaued preferences, the
Pareto correspondence does not satisfy Maskin monotonicity

Proof. Let R,R′ ∈ Dsp, x = (4, 8, 0), y = (4.5, 7.5, 0) ∈ X and
∑3

i=1 xi =
∑3

i=1 yi =
Ω = 12. Let R1 = R′1, R3 = R′3, p(R) = (5, 10, 0), and p(R′) = (5, [6, 9], 0).
Figure 2 illustrates such representations. Note that x ∈ P (R) and for all i ∈ N ,
L(xi, Ri) ⊆ L(xi, R

′
i). However, for profile R′, we have yi=2,3 ∼′i=2,3 xi=2,3 and y1P

′
1x1.

Therefore, x /∈ P (R′). Q.E.D.

4We note that the Pareto correspondence satisfies Maskin monotonicity and no-veto power condition
in private good economies with single-peaked preferences. Hence, in this domain it is Nash implementable
by Maskin’s original result. For more detail, see Thomson (1990,2010), and Doghmi and Ziad (2008 b).
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Figure 2: The Pareto correspondence and the (NE ∩ P ) correspondence do not satisfy
Maskin monotonicity.

In an independent work, Lombardi and Yoshihara (2011) also showed that Pareto
correspondence does not satisfy Moore and Repullo’s conditions and derive a similar
result to our’s.

The next proposition shows that the intersection of the no-envy solution with the
Pareto solution does not satisfy Maskin monotonicity.

Proposition 7 In the private good economies with single-plateaued preferences, the
(NE ∩ P ) correspondence does not satisfy Maskin monotonicity.

The proof of this Proposition is omitted, it is similar to that of Proposition 6.

The intersection of the Individually Rational Correspondence from Equal Division
with the Pareto correspondence does not satisfy Maskin monotonicity.

Proposition 8 In the private good economies with single-plateaued preferences, the (Ied∩
P ) correspondence does not satisfy Maskin monotonicity.

Proof. Let R,R′ ∈ Dsp, x = (1, 9, 2), y = (3, 6, 3) ∈ X and
∑3

i=1 xi =
∑3

i=1 yi =
Ω = 12. Let R1 = R3, R′1 = R′3, p(R) = ([0, 2], [5.75, 7.45], [0, 2]), and p(R′) =
([0, 3.25], [5.5, 8.5], [0, 3.25]). Figure 3 illustrates such representations.

We have for all i ∈ 1, 2, 3, xiRi
Ω
n

, and x1P1y1, y2P2x2 and x3P3y3. Therefore,
x ∈ (P ∩ Ied)(R). We have for all i ∈ N , L(xi, Ri) ⊆ L(xi, R

′
i). However, in profile R′,

we have yi=1,3 ∼′i=1,3 xi=1,3 and y2P
′
2x2. Therefore, x /∈ P (R′) and so x /∈ (P ∩ Ied)(R

′).
Q.E.D.
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Figure 3: The (Ied ∩ P ) correspondence does not satisfy Maskin monotonicity.

Corollary 2 In the domain of the private good economies with single-plateaued preferences,
the Pareto correspondence and its intersections with the No- Envy correspondence
and with the Individually Rational Correspondence from Equal Division can not be
implemented in Nash equilibria.

5.3 Discussion: why I-monotonicity and not strict monotonicity

In this subsection, we will focus our discussion on the strict monotonicity as long as
this condition is an important tool for Nash implementation in the case of single-peaked
preferences. In fact, Doghmi and Ziad (2008a) showed that strict monotonicity together
with strict weak no veto and unanimity is sufficient for the implementation of social
choice correspondences in Nash equilibria. By applying these conditions to the domain
of the private good economies with single-peaked preferences, the authors proved that
strict monotonicity alone is sufficient for Nash implementability and becomes equivalent
to Maskin monotonicity. In the following, we prove that the enlargement of this result
to the domain of the private good economies with single-plateaued preferences does not
work. We show that strict monotonicity alone is sufficient for Nash implementability, but
it is not equivalent to Maskin monotonicity. To prove this, we begin by the following
results.

Lemma 3 Let R,R′ ∈ <sp and x, y ∈ X. If the preferences are single-plateaued, yi ∈
LS(xi, Ri), and LS(xi, Ri) ⊆ L(yi, R

′
i), then L(yi, R

′
i) = [0,Ω].

Proof. The proof is similar to that of Doghmi and Ziad (2008 b), it is omitted.

By the same reasoning in Subsection 5.1, we provide the following results:

Lemma 4 On a single-plateaued domain, any strict monotonic SCC satisfies unanimity.
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According to Lemmas 3 and 4, we have the following corollary:

Corollary 3 On a single-plateaued domain, any strict monotonic SCC satisfies strict
weak no-veto power.

By using Lemma 4, Corollary 3, and Theorem 1 of Doghmi and Ziad (2008 a), we
complete the Proof of the following Proposition:

Proposition 9 Let n ≥ 3. In private good economies with single plateaued preferences,
any SCC satisfying strict monotonicity can be implemented in Nash equilibria.

Nevertheless, we show in the next proposition that, contrary to the domain of the
private good economies with single-peaked preferences, when preferences are single-
plateaued, strict monotonicity is not equivalent to Maskin monotonicity.

Proposition 10 In private good economies with single-plateaued preferences, the strict
monotonicity is not equivalent to Maskin monotonicity.

Proof. Let R,R′ ∈ <sp and x, y ∈ X. Suppose that xi ≤ xi ( similar statements can
be proved for xi > xi). i)⇒, it is clair that LS(xi, Ri) ∪ {xi} ⊆ L(xi, Ri). Therefore,
strict monotonicity implies Maskin monotonicity. ii) ⇐, in this case, suppose that
LS(xi, Ri) ∪ {xi} ⊆ L(xi, R

′
i) (1). If xi ∈ p(Ri) and xi /∈ p(R′i), then, from (1) it is

clear that L(xi, Ri) = [0,Ω] * L(xi, R
′
i). Thus, the inclusion of Maskin monotonicity is

not checked. Q.E.D.

Since strict monotonicity is not equivalent to Maskin monotonicity, we will return
to Proposition 9 to examine whether this sufficient condition is checked or not by the
monotonic SCC under consideration in the domain of the private good with single-
plateaued preferences. We give the following propositions.

Proposition 11 The Individually Rational Correspondence from Equal Division does
not satisfy strict monotonicity.

Proof. Let R,R′ ∈ <sp and N = {1, 2, 3}. Let Ω = 12, x = (4.5, 5.5, 2), R1 = R2,
p(Ri=1,2) = [xi=1,2 = 7, xi=1,2 = 8], r1(x1) = 9.5, r2(x2) = 9, p(R3) = [x3 = 1.5, x3 = 5].
Figure 4 illustrates such representations.

Therefore, we have Ω
n

= 4 < x1 = 4.5 < x2 = 5.5 < xi=1,2 = 7, thus for players 1

and 2, xi=1,2Ri=1,2
Ω
n

. For player 3, we have x3 = 2, Ω
n
∈ p(R3) = [x3 = 1.5, x3 = 5],

therefore x3 ∼3
Ω
n

. Thus, for all i ∈ N , xiRi
Ω
n

and so x ∈ Ied(R). Now, for a profile
R′, suppose that R1 = R2 = R′1 = R′2 for i = 1, 2, and for player 3, p(R′3) = [x′3 =
2.5, x′3 = 3.5], r′3(x3) = 4.25. Figure 2 illustrates these representations of R′. Thus, for
players 1 and 2, it is clear that LS(xi=1,2, Ri=1,2)∪{xi=1,2} ⊆ L(xi=1,2, R

′
i=1,2). For player

3, LS(x3, R3) ∪ {x3} = [0, x3[∪{x3}∪]x3,Ω] ⊆ L(x3, R
′
3) = [0, x3] ∪ [r′(x3),Ω]. Since

x′3 = 3.5 < Ω
n

= 4 < r′3(x3) = 4.25, then Ω
n
P ′3x3. Therefore x /∈ Ied(R

′). Q.E.D.

Proposition 12 The No-Envy correspondence does not satisfy strict monotonicity.
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Figure 4: The Ied correspondence does not satisfy strict monotonicity.

Figure 5: The No-Envy correspondence does not satisfy strict monotonicity.

Proof. Let R,R′ ∈ <sp and N = {1, 2, 3}. Let Ω = 12, x = (6, 4, 2), R1 = R2 = R3,
p(Ri=1,2,3) = [xi=1,2,3 = 1.5, xi=1,2,3 = 7]. Therefore, we have x ∈ NE(R). Figure 5
illustrates such representations.

Now, for a profile R′, suppose that Ri=1,2,3 = R′i=1,2 for i = 1, 2, and for player 3,
p(R′3) = [x′3 = 2.5, x′3 = 3.5], r′3(x3) = 4.75. Thus, for players 1 and 2, it is clear
that LS(xi=1,2, Ri=1,2) ∪ {xi=1,2} ⊆ L(xi=1,2, R

′
i=1,2). For player 3, LS(x3, R3) ∪ {x3} =

[0, x3[∪{x3}∪]x3,Ω] ⊆ L(x3, R
′
3) = [0, x3] ∪ [r′(x3),Ω]. Since x′3 = 3.5 < x2 = 4 <

r′3(x3) = 4.75, then x2P
′
3x3. Therefore x /∈ NE(R′). Q.E.D.
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We conclude that the individually rational correspondence from equal division, the no
envy correspondence, the (NE∩Ied) correspondence all do not satisfy strict monotonicity.
Thus, Proposition 9 does not apply. By applying to Theorem 2, we implement all these
correspondences.

6 Conclusion

We have proposed new sufficient conditions, called I-monotonicity and I-weak no-veto
power. We have showed that with at least three players, any social choice correspondence
satisfying these new conditions together with unanimity can be implemented in Nash
equilibria. In the domain of private good economies with single-plateaued preferences,
we have proved that, with at least three agents, an SCC is Nash implementable if and
only if it satisfies Maskin monotonicity. We have provided positive and negative results
for the implementability of some well-Known SCCs.

Finally, we want to return to the impossibility results that we have found, indicating
that this impossibility was addressed by Lombardi and Yoshihara (2011), and Doghmi and
Ziad (2013) in an area of partial honesty which was developed recently by Matsushima
(2008 a, b), and Dutta and Sen (2012).

7 Appendix

Proof. Let Γ = (S, g) be a mechanism which is defined as follows: For each i ∈ N , let
Si = < × A × N, where N consists of the nonnegative integers. The generic element
of strategic space Si is noted by: si = (Ri, ai,mi). Each agent announces a preference
profile, an optimal alternative for this profile and nonnegative integer. The function g is
defined as follows:

Rule 1: If for each i ∈ N , si = (R, a, 1) and a ∈ F (R), then g(s) = a.
Rule 2: If for some i, sj = (R, a, 1) for all j 6= i, a ∈ F (R) and si = (Ri, ai,mi) 6=

(R, a, 1), then:

g(s) =

{
ai if ai ∈ LS(a,Ri) ∪ I(a, o, Ri) 6= ∅ for some o ∈ LI(a,Ri) \ {a},
a otherwise.

Rule 3: In any other situation, g(s) = ai∗ , where i∗ is the index of the player of which
the number mi∗ is largest. If there are several individuals who check this condition, the
smallest index i will be chosen.

Let us show that F (R) = g(N(g,R, S)). The proof contains two steps:

Step 1. For all R ∈ <, F (R) ⊆ g(N(g,R, S)).
Let R ∈ < and a ∈ F (R). For each i ∈ N , let si = (R, a, 1). Then, by rule 1,

g(s) = a. We want to show that s ∈ N(g,R, S)). Let us choose any individual i and

any strategy s̃i ∈ Si such that s̃i = (R̃, ai, m̃). If ai ∈ LS(a,Ri) ∪ I(a, o, Ri) for some
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o ∈ LI(a,Ri) \ {a}, then, by rule 2, g(s̃i, s−i) = ai. But, since LS(a,Ri) ∪ I(a, o, Ri) ⊆
L(a,Ri), then g(s)Rig(s̃i, s−i), thus s ∈ N(g,R, S)). If ai /∈ LS(a,Ri)∪ I(a, o, Ri) for all
o ∈ LI(a,Ri) \ {a}, then g(s) = g(s̃i, s−i), thus s ∈ N(g,R, S)).

Step 2. For all R ∈ <, g(N(g,R, S)) ⊆ F (R).
Let s ∈ N(g,R, S). Let us show that g(s) ∈ F (R). We will study the various

possibilities of writing the profile of strategies s = (s1, s2, ..., sn).
Case a: s = (s1, s2, ..., sn). Suppose there exists (R′, a,m) ∈ < × A × N, with

a ∈ F (R′), such that s is defined by si = (R′, a,m) for any i ∈ N . Then, by rule 1,
g(s) = a.

Let us take all i and any b ∈ LS(a,R′i) ∪ I(a, o, R′i) ∪ {a} for some o ∈ LI(a,R′i) \
{a}. Let s̃i = (R′, b,m′). Then, by the rule 2, g(s̃i, s−i) = b. Since s ∈ N(g,R, S),
a = g(s)Rig(s̃i, s−i) = b. Therefore, LS(a,R′i) ∪ I(a, o, R′i) ∪ {a} ⊆ L(a,Ri) for some
o ∈ LI(a,R′i) \ {a}. By I-monotonicity, a ∈ F (R).

Case b: s = (s1, s2, ..., sn). Assume there is i ∈ N , R′ ∈ < and a ∈ A such that
a ∈ F (R′). For all j 6= i, sj = (R′, a,m) and si = (R′i, ai,mi) 6= sj, in this case,

g(s) =

{
ai if ai ∈ LS(a,R′i) ∪ I(a, o, R′i) 6= ∅ for some o ∈ LI(a,R′i) \ {a},
a otherwise.

There are two subcases:
Subcase b1: If g(s) = ai,

By definition ai ∈ LS(a,R′i) ∪ I(a, o, R′i) 6= ∅ for some o ∈ LI(a,R′i) \ {a}. Take any

b ∈ LS(a,R′i)∪I(a, o, R′i) 6= ∅ and let s̃i be a deviation by agent i such that s̃i = (R̃, b, m̃).
Then, by rule 2, g(s̃i, s−i) = b. But, since s ∈ N(g,R, S), b ∈ L(ai, Ri). Hence, we have
ai ∈ LS(a,R′i) ∪ I(a, o, R′i) ⊆ L(ai, Ri) for some o ∈ LI(a,R′i) \ {a}. (1)

Next, for any other deviation j 6= i and any b ∈ A, let s̃j = (R̃, b, m̃) a deviation,
m̃ is the unique greatest integer in the profile (s̃j, s−j). By rule 2, g(s̃j, s−j) = b. Since
s ∈ N(g,R, S), we have ai = g(s)Rig(s̃j, s−j) = b. Therefore, for all j 6= i, A ⊆ L(ai, Rj).
(2)

From (1), (2) and by I-weak no-veto power, we have ai ∈ F (R).
Subcase b2: If g(s) = a,

By the same reasoning used in case a, we obtain by I-monotonicity that a ∈ F (R).
Case c: s = (s1, s2, ..., sn): ∀i ∈ N , si = (R′, a,m) with a /∈ F (R′), g(s) = a.

Let b ∈ A, s̃i = (R′, b,m′), where m′ > m, then, g(s̃i, s−i) = b. As s ∈ N(g,R, S), then,
a = g(s)Rig(s̃i, s−i) = b. Therefore, A ⊆ L(a,Ri) for all i ∈ N . By par unanimity,
a ∈ F (R).

Case d: s = (s1, s2, ..., sn): ∃k1, k2, k3 where sk1 6= sk2 , sk1 6= sk3 , sk2 6= sk3 ,
g(s) = al: ml is the maximum of the integers m. Let b ∈ A, and s̃i = (R′, b,ml + 1) a
deviation. Therefore, g(s̃i, s−i) = b. As s ∈ N(g,R, S), then, g(s)Rig(s̃i, s−i) = b. Thus,
A ⊆ L(g(s), Ri) for all i ∈ N . By unanimity, g(s) ∈ F (R). Q.E.D.
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