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Abstract

A multidimensional-and-sequential screening problem arises in a framework where the

agent is privately informed about expected cost and cost variability and, subsequently,

learns the realized cost as well. As the principal�s marginal surplus function becomes less

concave/more convex, the optimal mechanism re�ects progressively stronger incentives

to mimic less ine¢ cient types, and to misrepresent the cost variability relative to the

expected cost. When the principal�s knowledge imperfection about the cost variability is

su¢ ciently less important than that about the expected cost, quantities are pooled with

respect to the former for a high-expected-cost agent. A low-expected-cost agent is not

assigned the �rst-best output at least in some state of nature.
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1 Introduction

Before undertaking new activities in uncertain environments, whether to be run for public or

private purposes, �rms typically develop a feasibility analysis that is meant to assess prospective

costs. This analysis consists in determining not only the expected value of the cost, but also

its variability, which measures the uncertainty associated with the activity.1 The outcome that

is obtained is not necessarily publicly observable. Therefore, when �rms perform the analysis

with regards to a delegated activity, they are likely to have an information advantage about

the two assessed cost components vis-à-vis the delegating party.

Information problems of this kind may plague any contractual relationship in which some

good or service is procured from an outside supplier under uncertainty about production costs.

In particular, they are found to be relevant for governmental agencies (regulators, public au-

thorities, and other institutions) dealing with �rms (regulated monopolies, franchisees) for the

execution of activities of general interest. As an illustration, in transportation projects, con-

cerns typically arise about overoptimistic estimates of both expected values and error forecasts.

Not only this may re�ect the presence of technical fallacies. It may also follow from the strategic

manipulation of the truly estimated expected value and degree of uncertainty, unless incentives

to behave opportunistically are contractually removed.2

Although it is natural that, in uncertain environments, agents hold private information

about both the expected value of some parameter that matters in the relationship with the

principal and its variability, the literature has not yet studied how principals should design

screening mechanisms to properly address information issues of this kind. Riordan and Sap-

pington [20] and Spulber [22] focus on situations in which, at the outset of the relationship

with the principal, the agent is privately informed about the sole expected cost of production.

Miravete [19] - [18] and Courty and Li [9] take a similar approach, though in a di¤erent context.

They tackle the issue of private knowledge about the expected consumption bene�t, looking

at situations in which the agent is a consumer who purchases a product from a monopolist.

Courty and Li [9] also analyze the case in which the consumer observes the variability of the

perspective consumption bene�t but not its expected value.

In this article, we characterize the optimal incentive mechanism for a production activity

that a principal delegates to an agent who is privately informed about both the expected

value and the variability of the unit cost of production at the contracting stage. In line with

previous works, we make the study truly positive by focusing on situations in which, at a

later stage, the agent observes privately also the realized cost, which can be either low (the

good state) or high (the bad state) i.e., we allow for sequential learning on the agent�s side.

Hence, overall, the agent holds two pieces of private information (jointly representing the �rst-

1A feasibility analysis can, of course, be required to assess prospective bene�ts as well. In this study, however,
attention is restricted to costs.

2Several studies about transportation projects provide evidence that, in the latter, costs and errors about
expected costs turn out to be systematically bigger than originally estimated. It is argued that wrong predictions
are largely due to �rms�strategic behaviour (see, for instance, Flyvbjerg [11], Flyvbjerg et alii [12] and Flyvbjerg
et alii [13]).
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stage two-dimensional type) at the outset of the relationship with the principal, and learns

an additional piece of information (the actual state of nature) once uncertainty vanishes. By

representing this information structure, we bridge the strand of literature on sequential learning

problems (that we mentioned above) with the studies on multidimensional information issues

that explore situations in which, at the contracting stage, the agent holds more than one piece

of information, related either to one activity (Armstrong [1], Asker and Cantillon [5]) or to two

activities (Dana [10], Armstrong and Rochet [2]), and there is nothing to learn over time.

Given the information structure described above, as in Riordan and Sappington [20] and in

Courty and Li [9], the principal relies on a sequential screening mechanism, under which the

agent is required to disclose information twice i.e., when parties sit at the contracting table

and when uncertainty vanishes. Speci�cally, the mechanism includes a prior menu of optional

schedules, among which the agent chooses by reporting the �rst-stage two-dimensional type,

followed by a menu of speci�c contractual options, from which the agent draws the �nal policy

by reporting the realization of the cost. The focus on a mechanism with this structure is

motivated by that, as frequent in incentive problems, it is desirable for the principal to collect

a report every time the agent acquires some new piece of information, rather than to ignore it,

prior to the policy choice.

Within this framework, we address a number of speci�c issues. First, we attempt to un-

derstand which features of the economic environment where the principal/agent relationship

unfolds drive the optimal policy design, and how exactly they a¤ect that policy. A major char-

acteristics of multidimensional screening problems is that, depending upon the features of the

environment in which activities are run, di¤erent combinations of relevant incentive constraints

of the agent come to matter, hence di¤erent contractual policies are optimally designed. To pin

down all possible solutions to the problem that the principal faces in our model, it is essential

to identify the features that are relevant in the particular setting that we consider, in which

a non-negligible complication follows from the fact that information is elicited not only on

more than one dimension, but also sequentially. Once all solutions are characterized, we ask

two further questions. What could one learn out of those solutions in terms of e¢ ciency/rent-

extraction trade-o¤, e¢ ciency being expressed in expected terms in the considered setting?

Which are the very consequences of the screening problem being both multidimensional and

sequential?

Our �rst result is that the optimal multidimensional-and-sequential screening mechanism

depends �nely upon (i) the shape of the marginal surplus function, which expresses the prefer-

ences of the principal for the good produced by the agent, and (ii) the "spread index," which

measures the importance of the principal�s knowledge imperfection about the expected value

of the cost, relative to that about the variability of the cost. The combined relevance of the

principal�s preferences, on one side, and the relative importance of the principal�s gap about

the two information pieces, on the other, has not appeared to be substantive in the information

problems that the theory of incentives has explored so far. We hereafter illustrate why these

two elements matter jointly in our setting.
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For the agent to release information about the realized unit cost at the second stage of the

relationship, the principal must set the production level in the good state at least as large as in

the bad state for each �rst-stage type. Absent any requirement on the magnitude of the agent�s

ex post payo¤,3 this is the only restriction that second-stage screening imposes on �rst-stage

decisions. At the contracting stage, the principal chooses the quantities to be produced at the

second stage, trading o¤ expected e¢ ciency against rent-extraction purposes. Peculiar to our

framework is that rents depend upon expected quantities and expected quantity di¤erences,

not directly upon production levels. Under this circumstance, e¢ ciency concerns involve both

the expected surplus over the quantities to be provided in the two states of nature and the

expected surplus di¤erence between those same quantities. Because of this, the loss associated

with the quantity distortions is �nely related to the curvature of the marginal surplus function.

As the latter becomes less concave/more convex, di¤erent contractual solutions emerge, at

optimum, re�ecting di¤erent combinations of binding incentive constraints.

Let us now come to the spread index, the second relevant element in the characterization of

the optimal mechanism. The reason why it matters is that not only, as usual, the rent-extraction

bene�ts that the principal obtains through quantity distortions depend upon how costly each

piece of information is per se. They also depend upon how costly each piece of information

is relative to the other. This all works as follows. Any raise in the bad-state production

level triggers opposite e¤ects in terms of incentives to misrepresent expected cost and cost

variability. The way in which the bad-state production is �xed in the optimal mechanism,

relative to the good-state production, captures the need to compromise these two contrasting

e¤ects. Therefore, the optimal screening mechanism displays di¤erent features not only for

di¤erent shapes of the marginal surplus function, as already explained, but also for di¤erent

values of the spread index.

The characterization of the whole set of solutions allows us to draw insights about the way

in which relevant incentives evolve as the marginal surplus function becomes less concave/more

convex and the contractual policy is changed consequently. We �nd that, given the value of

the spread index, information rents and production levels in the optimal mechanism re�ect

progressively stronger incentives to mimic less ine¢ cient types. That is, less ine¢ cient types

become more and more likely to be announced. Accordingly, more surplus is given up to the

agent in order to elicit information. This is because, the marginal surplus function being less

concave/more convex, the principal is more concerned with e¢ cient production. That is, she

cares about containing distortions, and particularly privileges low-cost output (i.e., output

produced by less ine¢ cient types) with respect to high-cost output (i.e., output produced by

more ine¢ cient types).4 In return for overall more e¢ cient production, she then grants higher

information rents.

Besides, as the marginal surplus function becomes less concave/more convex, information

3The issue of the agent�s ex-post liability is considered at a later stage.
4Throughout the paper the feminine pronoun she is referred to the principal, the masculine pronoun he to

the agent, the neuter pronoun it to the type.
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rents and production levels re�ect progressively stronger incentives to misrepresent the vari-

ability of the cost relative to the expected value of the cost. Again, this is to be understood

by considering the stronger concern of the principal for e¢ cient production that we mentioned

above. On top of privileging production by less ine¢ cient types, as we said, this concern is

addressed by keeping output large in the good state relative to the bad state, for any given

type. Then, the rents designed to prevent misreporting on cost variability are set high, with

the obvious consequence that this lie becomes more attractive relative to a lie on the expected

cost.

Importantly, the various solutions that the screening problem attains in our framework,

depending upon the shape of the principal�s marginal surplus function, would reduce to one

single solution, not coinciding with any of those that we pin down, if the problem were not

sequential. This emerges from the comparison with purely multidimensional screening prob-

lems, in which the agent runs two activities and holds one piece of private information on

each such activity (Armstrong and Rochet [2], for instance). In those problems, the quantity

chosen for the �rst activity is optimally conditioned also on the information concerning the

second activity if and only if the two pieces of information are correlated. Absent correlation,

the principal faces twice a replica of a standard unidimensional adverse selection problem, and

each quantity re�ects information on the activity to which it pertains. In our model, optimal

quantities depend upon both expected cost and cost variability, despite these not being cor-

related, because the second-stage state of nature is, in fact, an aggregate resulting from these

two pieces of �rst-stage information.

These insights are drawn for any possible size of the spread index. Nonetheless, the de-

termination of the whole set of solutions allows us to further highlight an interesting aspect

of the optimal mechanism, related to the exact magnitude of the spread index. As the latter

increases, meaning that the knowledge imperfection about the expected cost becomes progres-

sively more important, relative to that about the cost variability, similarities emerge with the

mechanisms that Riordan and Sappington [20] and Courty and Li [9] characterize for the case

in which, at the contracting stage, the agent is privately informed about the sole expected

value of the parameter that is relevant in the relationship with the principal. Nonetheless, the

multidimensional nature of the incentive problem that we explore involves that similarities are

only partial. Speci�cally, one �rst similarity resides in that the principal assigns to an agent

with high expected cost some given production level, whatever his cost variability. That is,

she induces pooling along the second dimension of private information. However, this does

not mean that the principal always needs to standardize the production rule with respect to

cost variability when the spread index is large. Actually, the optimal output pro�le is fully

separating even in this case, provided the forecast about the agent�s cost is optimistic. Another

similarity consists in that a low-expected-cost agent may be required to produce the �rst-best

quantities, at least in some state of nature. Yet, unlike in purely sequential frameworks, this

does not always occur in our setting. Again depending upon the preferences of the principal

for the good and the relative importance of the two information problems, distortions may also
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be induced in the low-expected-cost output. Speci�cally, this occurs in the case of very con-

cave marginal surplus and very low spread index. The mechanism that we pin down naturally

collapses onto a purely sequential mechanism only in the limit case of commonly known cost

variability, in which the solution to the screening problem is no longer di¤erentiated according

to the shape of the principal�s marginal surplus function.

Overall, the comparison between the mechanism that proves optimal in our model and

those that are found to be optimal in purely multidimensional or sequential frameworks makes

it clear that the importance that the features of the surplus function have in determining its

structure is a very consequence of the problem being both multidimensional and sequential.

The results presented so far are derived in a full-commitment framework in which the

principal is able to keep the agent in the contract by simply ensuring that he breaks even

in expectation. One might object that this circumstance is seldom veri�ed, in practice, and

that it would be more realistic and, thus, more useful to look at situations where the agent is

protected by limited liability. In fact, introducing limited liability on the agent�s side would

bring about analytical complications without a¤ecting the qualitative nature of results. To

evidence this, as a �nal step of the work, we admit ex-post participation constraints and,

referring to the case of linear marginal surplus for illustrative purposes, we show that our

original analysis is not restrictive. Actually, the information problem comes out to be similar

to the one that the principal faces, under the same circumstances, in the absence of ex-post

participation constraints. Hence, the optimal mechanism maintains its main features in the

new environment. With regards to purely sequential problems, Krahmer and Strausz [15] �nd

that, when ex-post participation constraints are imposed, the optimal contract is a static one,

and exclusively refers to the agent�s aggregate �nal information. This is not the case in our

setting. Indeed, because the second-stage state is linked directly (rather than stochastically) to

the �rst-stage type, the principal does bene�t from requiring the agent to report information

twice, rather than only after he has observed the �nal cost, even in the presence of ex-post

participation constraints.

The reminder of the article is organized as follows. After reviewing the mainly related liter-

ature hereafter, we present the analytical framework and set the programme of the principal in

Section 2. In Section 3, we develop some initial steps of analysis, and provide a few preliminary

results. The optimal screening mechanism is characterized in Section 4 and discussed in Section

5, where the core lesson of the study is conveyed. Section 6 brie�y concludes. Mathematical

details are relegated to the Appendix.

1.1 Mainly related literature

In a early work on agency relationships with information evolution over time, Riordan and

Sappington [20] explore the problem of a regulator who auctions out a franchise public-service

contract to a �rm that holds private information about the expected cost at the tendering stage
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and privately observes the realized cost at a later stage.5 Still in an auction model, Spulber

[22] represents the situation in which, at the tendering stage, each participant knows privately

the possible levels of a cost overrun that he may incur at a later stage, whereas the basic

cost is commonly observed. This is tantamount to having the agent privately informed about

either the cost expectation or its variability, with perfect correlation between the two. Hence,

private information at the tendering stage is one-dimensional, as in the model of Riordan and

Sappington [20]. Miravete [19] - [18] and Courty and Li [9] study an information problem anal-

ogous to that of Riordan and Sappington [20], in a di¤erent setting. Speci�cally, they consider

a monopolist selling a product to a consumer who knows privately his expected bene�t from

consumption at the initial stage and observes privately his actual preference for the product

at a later stage. Additionally, Courty and Li [9] investigate the alternative situation in which

the customer is initially informed about his taste variability, rather than its expected value.6

None of these authors considers the possibility that the agent hold two-dimensional private

information (including both the expectation and the variability of the relevant cost/bene�t) at

the time he signs the contract with the principal, whereas we do so with regards to the cost

of the agent�s activity. The focus on a sequential mechanism, which we share with Riordan

and Sappington [20] and Courty and Li [9], allows us to account for the principal�s wish to

receive a report every time the agent learns something privately, as we mentioned. From this

standpoint, we rather diverge from Spulber [22] and Miravete [19] - [18]. In the former model,

second-stage information disclosure is unfeasible because contracts are not enforceable; in the

latter, sequential screening is neglected as the goal is to compare two mechanisms that are

based on either �rst-stage or second-stage information release only.

Among the studies on multidimensional screening, Dana [10] and Armstrong and Rochet

[2] assume that the agent executes two activities for the principal, holding private information

about the cost of either activity. In this setting, the production level of each activity is used

as a screening instrument for the corresponding piece of private information. In Asker and

Cantillon [5], the agent runs a single business and knows privately both the operating and

the �xed cost. As the latter is not related to the produced quantity, the principal has one

sole screening device related to the production level. Similarly, in Armstrong [1] the agent

executes a single activity but because his two pieces of information (namely, production cost

and product demand) are both related to the production level, the principal uses the (sole)

5A few more recent studies extend the analysis of Riordan and Sappington [20] to environments in which
either the contract includes such additional factors as product quality (Che [8]; see also Che [7] for an overview)
or it accounts for various sources of information asymmetries (Armstrong and Sappington [3]) or both (Asker
and Cantillon [5]). However, these papers do not tackle problems related to information learning on the agent�s
side. The information structure they consider is tantamount to having perfectly correlated �rst- and second-
stage information in the model of Riordan and Sappington [20] (on this point compare footnote 5 in Che
[8]).

6In details, Courty and Li [9] consider two types of customers having a continuum of possible valuations of
the product and study the following two situations: (i) one type �rst-order stochastically dominates the other;
(ii) one type faces greater valuation uncertainty than the other in the sense of mean-preserving spread. The
�rst case corresponds to having private information about the sole cost expectation, the second case to having
private information about the sole cost variability.
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product price to screen both. In our model, as in Asker and Cantillon [5] and in Armstrong

[1], the agent is delegated a single activity. Nonetheless, unlike in those papers, two quantity-

related screening devices, namely the expected production and the expected di¤erence between

production levels, come up to be available for the principal at the stage in which she faces the

two-dimensional information problem. For this reason, despite the di¤erence in the number

of activities that the agent executes for the principal, the results derived in our framework

compare more naturally with those of Armstrong and Rochet [2], which explains why we refer

systematically to the latter throughout the analysis.

2 The model

We consider the relationship between a principal (P) and an agent, both risk-neutral, for

the production of q units of some good at a payment t:7 The expected unit cost of production �

is drawn from the set f�L; �Hg ; �H > �L > 0; with commonly known probabilities � and 1� �;
respectively. We denote �� = �H � �L: The unit cost is realized after the contract is signed
and before production takes place. It can be either ��� or �+� with equal probabilities. The
former (low cost) represents the "good" state resulting from a positive shock, the latter (high

cost) the "bad" state resulting from a negative shock. By attaching equal probabilities to these

two events, we prevent the otherwise asymmetric distribution of high and low unit costs from

imposing structure on the optimal mechanism. The parameter �; expressing the uncertainty

about the unit cost realization (i.e., the unit cost variability), is drawn from the set f�L; �Hg ;
�H > �L > 0; with commonly known probabilities � and 1 � �; respectively. We also denote
�� = �H � �L: Throughout the article, we refer to the generic realization of the two cost
parameters as to �i and �j; with i; j 2 fL;Hg : To simplify the analysis, we take �L; �H ; �L
and �H to be such that �� > ��: In words, we suppose that the knowledge imperfection about

the expected cost is more important than that about the cost variability. This means that a

higher expected cost corresponds to a higher true cost, even when it is associated with a higher

variability and the good state is realized (i.e., �H � �H > �L � �L):

Information structure Before sitting at the contracting table, the agent observes privately

both the expected cost �i and the cost variability �j; i; j 2 fL;Hg : Hence, when the contract
is signed (the �rst stage of the relationship), he enjoys a double information advantage. We

denote ij the agent�s type for any realized pair (�i; �j) and � � fLL;LH;HL;HHg the set
of feasible types. The agent acquires a new information advantage when the state of nature

is determined (the second stage of the relationship). Indeed, he learns privately whether the

actual unit cost is �i � �j or �i + �j: An important aspect is that the (second-stage) state of
nature depends directly upon the (�rst-stage) type of the agent.

7As far as a public project or an activity of general interest is concerned, the agent can be viewed as
a contractor, a supplier, a regulated (possibly local) monopoly; the principal as a governmental agency, a
regulator etc.
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Payo¤s under symmetric information and �rst-best allocation For each type ij 2 �;
we let (q

ij
; tij) denote the allocation to be implemented when the cost is �i � �j; and (qij; tij)

that to be implemented when the cost is �i + �j: Accordingly, under symmetric information,

the pro�ts of the agent are given by

�ij = tij � (�i � �j) qij (1)

�ij = tij � (�i + �j) qij: (2)

Assuming that there is no discount factor and recalling that good and bad state occur with

equal probability, the payo¤ of the agent is written as

�ij =
1

2
(�ij + �ij): (3)

Production of q units of the good yields the gross surplus S (q) to P. Under symmetric

information, the net bene�t of P is given by

Vij =
1

2

h
(S(q

ij
)� tij) + (S(qij)� tij)

i
: (4)

We take the surplus function to be three-time di¤erentiable, with S 0 (q) � 0 and S 00 (q) � 0;

8q � 0:We further take S 000 (q) to maintain the same sign for all values of q for which S 0 (q) > 0:
This involves that there is a �rst range of values of q; namely [0; eq); for some eq > 0; over which
S 0 (q) is strictly decreasing and, if eq < +1; there is also a second range [eq;+1) over which
S 0 (q) is constant and equal to zero.8 We also assume that S 0 (0) is �nite but su¢ ciently large

to ensure that the optimal quantity is positive. Moreover, lim
q!+1

S 0 (q) = 0 so that the optimal

quantity is �nite. Taken altogether, the previous assumptions warrant that the problem of P

(to be presented below) has an interior solution and that, more interestingly, the analysis of

the optimal contract can be developed for di¤erent shapes of S 0 (q) : This is going to be a core

aspect of our work.9

At �rst best (FB hereafter), an agent of type ij 2 � is required to produce quantities such
that S 0(q�

ij
) = �i � �j and S 0(q�ij) = �i + �j; and is given up no rent i.e., ��ij = 0:

Timing The game unfolds as follows. Nature draws �i and �j; the agent observes them

privately and then meets P at the contracting table. At the �rst stage of the relationship, P

o¤ers to the agent the truthful menu of optional contracts f(q
ij
; tij); (qij; tij)g; 8ij 2 �: The

agent reports ij to P and the contract targeted to type ij is signed. Both parties fully commit

8For instance, if P is a regulator/governmental agency and S (q) re�ects consumer preferences over the good
q; the case of S0 = 0 represents the situation in which quantity is su¢ ciently large that consumers are no longer
willing to pay for extra units of the concerned good.

9As S000 (q) is assumed to have a constant sign, if we were to take S0 (q) > 0 and S00 (q) < 0 for all q � 0; then
the only meaningful case would be that of S0 (q) strictly convex for all non-negative values of q (see Menegatti
[17] for a proof). The same would occur under the assumption that lim

q!0
S0 (q) = +1: In either case, the

solutions presented in the sequel of the work would reduce to those that arise for S0 (q) strictly convex.
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to this contract.10 At the second stage, the agent observes privately whether a positive or a

negative shock has a¤ected the cost (hence, whether the realized state is good (�i � �j) or
bad (�i + �j)) and announces it to P. Accordingly, out of the stipulated contract, either the

allocation (q
ij
; tij) or the allocation (qij; tij) is e¤ected. Remarkable aspects of this game are

that P collects a report every time the agent holds/acquires some piece of private information,

and that the �rst-stage report is two-dimensional. It means that P engages in both sequential

and multidimensional screening. We shall elaborate further on this aspect after presenting the

programme of P.

2.1 The programme of the principal

Under asymmetric information, the Revelation Principle applies, and P can restrict atten-

tion to direct mechanisms that induce truthtelling. The optimal mechanism is pinned down by

solving the following programme:

Max
(q
ij
;tij);(qij ;tij)

1

2

X
ij2�

Eij

h
(S(q

ij
)� tij) + (S(qij)� tij)

i
subject to (�)

8>>>><>>>>:
�ij � 1

2

n
[ti0j0 � (�i + �j) qi0j0 ] + [ti0j0 � (�i � �j) qi0j0 ]

o
; 8ij; i0j0 2 � (ICi

0j0

ij )

�ij � 0; 8ij 2 � (PCij)

�ij � �ij + 2�jqij; 8ij 2 � (icij)

�ij � �ij � 2�jqij; 8ij 2 � (icij)

The purpose of P is to maximize the expected surplus, net of the payment to be made to

the agent for the production of the good, subject to a number of constraints. The �rst-stage

incentive constraint (ICi
0j0

ij ) warrants that type ij 2 � prefers declaring the truth rather than
delivering any other report i0j0 2 �: Additionally, the �rst-stage participation constraint (PCij)
requires that type ij be guaranteed a non-negative payo¤. Lastly, the second-stage incentive

constraints (icij) and
�
icij
�
warrant that type ij correctly announces whether a positive or a

negative shock, respectively, has occurred.11

10One can think of commitment by the agent as ensured by imposing cancellation fees at the production
stage. Alternatively, ex-post participation constraints could be introduced, a possibility that will be considered
in Section 6. In turn, one can think of commitment by P as ensured by the presence of legislation and procedural
requirements that allow her to credibly engage in enacting the agreed policies in the future. For a discussion
on commitment in continuing relationships, see, for instance, Baron and Besanko [6].
11For each type ij 2 �; on top of (ICi

0j0

ij ); an additional �rst-stage incentive constraint is to be considered.
This is the constraint whereby the ij�agent not be tempted to declare i0j0; knowing that he will also cheat on
the realized shock at the second stage. In � these constraints are omitted as they are implied by (ICi

0j0

ij ); (icij)

and (icij):

10



3 Preliminary analysis

Prior to characterizing the optimal multidimensional-and-sequential screening mechanism,

we develop a few preliminary steps of analysis that illustrate how one can identify the con-

straints that are relevant in �: Ultimately, these constraints determine the optimal rents and

the distortions to be possibly induced in the production levels.

3.1 Relevant constraints and type ranking

We begin by stating a standard result concerning the second stage of the contractual rela-

tionship.

Lemma 1 At the solution to � :
q
ij
� qij; 8ij 2 �: (5)

For any pair
n
q
ij
; qij

o
for which (5) holds, and for any given �ij; (icij) and (icij) are satis�ed.

Conditional on type ij being correctly reported at the �rst stage, (5) is necessary for

truthtelling to be induced at the second stage as well.

The next result, which is also rather obvious, evidences the circumstance under which, for

each type, production levels are di¤erentiated between states of nature, which means that P

does not need to introduce in�exible rules to make the contract incentive-compatible.

Lemma 2 At the solution to �; q
ij
> qij 8ij 2 � if and only if �j is su¢ ciently large.

In the light of Lemma 2, we introduce the following assumption to ensure that, whatever

his type, the agent is not imposed a standard rule at the second stage, and can thus exert

discretion in the choice of a speci�c contractual option within the menu o¤ered by P at the

�rst stage.

Assumption 1 For all j 2 fL;Hg ; �j is su¢ ciently large in the sense of Lemma 2:

Let us next focus on �rst-stage incentives. To understand how P is to tackle them, it is

useful to construct a ranking that re�ects how e¢ cient each type is in production relative to

the others. At this aim, we observe that the expected cost of production for the ij�agent
reporting i0j0 is written as

ECij(qi0j0 ; ri0j0) = �iqi0j0 � �jri0j0 ; (6)

where

qi0j0 �
1

2
(q
i0j0
+ qi0j0) and ri0j0 �

1

2
(q
i0j0
� qi0j0)

respectively denote the expected production level and the expected di¤erence between the good

and the bad-state production levels that P commends when she receives the report i0j0: Using

the expression in (6), for any generic (q; r)�pair, we �nd that

ECLH(q; r) < ECLL(q; r) < ECHH(q; r) < ECHL(q; r): (7)
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According to (7), LH and HL are the most and the least e¢ cient type, respectively. Types

LL and HH both display an intermediate degree of e¢ ciency, yet LL is more e¢ cient than

HH as q > r (by de�nition) and �� > �� (by assumption).

3.2 Information rents and reduced problem

Hinging on (6), ICi
0j0

ij can be reformulated as

�ij � �i0j0 + ECij(qi0j0 ; ri0j0)� ECi0j0(qi0j0 ; ri0j0); 8ij; i0j0 2 �: (8)

As in other multidimensional screening problems (Armstrong and Rochet [2], for instance), for

all but the least e¢ cient type, at least one downward incentive constraint is binding, "down-

ward" here re�ecting the temptation to pretend to be less e¢ cient according to the ranking

in (7) : This explains why, at optimum, the rents accruing to the four types are expressed as

reported below.

Lemma 3 At the solution to �; information rents are such that

�HL = 0 (9a)

�HH = ��rHL (9b)

�LL = ��LL;1 + (1� �)�LL;2 (9c)

�LH = 
1�LH;1 + 
2 [��LH;2 + (1� �)�LH;3] + 
3�LH;4; (9d)

where

�LL;1 = ��qHL and �LL;2 = ��qHH +��rHL ���rHH (10)

together with

�LH;1 = ��qHH +��rHL; �LH;2 = ��qHL +��rLL; (11)

�LH;3 = ��qHH +��rHL ���rHH +��rLL and �LH;4 = ��qHL +��rHL;

and � 2 [0; 1] ; 
z 2 [0; 1] 8z 2 f1; 2; 3g ; 
1 + 
2 + 
3 = 1:

Having the rents as described in Lemma 3 does not necessarily mean that no upward

incentive constraint is binding, and that production levels are not pooled, at optimum, for

some types. However, when this does occur, the solution to � is, as usual, analogous to that

to the following reduced problem:

Maxn
q
ij
; qij ;�ij

o X
ij2�

�
1

2
Eij

h�
S(q

ij
)� (�i � �j) qij

�
+
�
S(qij)� (�i + �j) qij

�i
� Eij [�ij]

�
: (�0)

Lemma 4 Suppose that the solution to �0 solves � as well. Then, type LH is required to
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produce q�
LH
and q�LH ; whereas the production levels assigned to types LL; HH and HL satisfy

S 0(q
LL
) = �L � �L + 
2

1� �
�

��

S 0(qLL) = �L + �L � 
2
1� �
�

��;

S 0(q
HL
) = �H � �L +

�

1� �

��
� + (
2� + 
3)

1� �
�

�
�� +

�
1� � + (1� �
2�)

1� �
��

�
��

�
S 0(qHL) = �H + �L +

�

1� �

��
� + (
2� + 
3)

1� �
�

�
�� �

�
1� � + (1� �
2�)

1� �
��

�
��

�
and

S 0(q
HH
) = �H � �H +

�

1� �

��

1 + (1� �)

�

2 +

�

1� �

��
�� � (1� �)

�

2 +

�

1� �

�
��

�
S 0(qHH) = �H + �H +

�

1� �

��

1 + (1� �)

�

2 +

�

1� �

��
�� + (1� �)

�

2 +

�

1� �

�
��

�
;

respectively.

As expected, quantities are (possibly) distorted away from the FB levels for all but the most

e¢ cient type (LH) in both states of nature. Based on this result, we can further investigate

whether and under which circumstances the solution to �0 solves � as well.

3.3 What matters in the determination of the solution

From Lemma 3 it is clear that � displays similarities with multidimensional screening prob-

lems, such as the one that Armstrong and Rochet [2] analyze. Albeit the way in which those

problems are solved is somewhat suggestive of the procedure to follow in the framework here

considered, identifying the set of binding incentive constraints is, yet, far from obvious. As

compared to the problems aforementioned, additional complications ensue here from the inter-

dependence between the values of qij and rij that enter the rents. This makes rather particular

both the way in which the solution is found and the elements that matter at determining it. In

essence, the solution re�ects �nely (i) the relative importance of the two knowledge imperfec-

tions (about expected cost and cost variability) that P su¤ers from, and (ii) the characteristics

of the principal�s surplus function. As it will become apparent in a while, depending upon

how these elements combine, it might even happen that, at optimum, unlike in "standard"

frameworks, some upward incentive constraint is binding, or production levels are bunched for

some types.

The relative importance of the two knowledge imperfections is expressed by the ratio

��=��; which we denominate "spread index," and does not come as a surprise per se. Pecu-

liar is here the way in which this contributes to shaping the optimal mechanism. That is, any

13



change in the quantity that type ij is assigned in the bad state (qij) triggers opposite e¤ects

in the two rent components ��qij and ��rij:

The characteristics of the surplus function, and, more precisely, the shape of S 0; are relevant

precisely due to the problem of P being both sequential and multidimensional. In short, the

shape of S 0 matters, �rst, because quantities are �xed considering the marginal surplus in

expected terms at the �rst stage, which explains the relevance of sequentiality; second, because

quantities are to be properly ranked not only between states of nature (for each type) but also

across types (in each state), which explains the relevance of multidimensionality. To clarify

this point, consider the FB scenario and observe that q�ij and r
�
ij are not necessarily ordered

according to the types�e¢ ciency ranking, as it is usually the case in screening problems (and,

in particular, in problems that are either purely sequential or purely multidimensional). More

precisely, FB expected productions (q�ij) are not necessarily ordered according to the e¢ ciency

ranking in (7) ; in spite of the expected cost (as de�ned in (6)) increasing with q: FB expected

di¤erences (r�ij) are not necessarily ordered inversely to (7) ; in spite of the expected cost

decreasing with r: Indeed, the FB allocation is such that

1

2
(S 0(q�

ij
) + S 0(q�ij)) = �i (12)

1

2
(S 0(q�ij)� S 0(q�ij)) = �j; (13)

from which we deduce that q�LH � q�HL if and only if S 0 is convex, whereas r�HH � r�LH if and
only if S 0 is concave. Under asymmetric information, for truthtelling to be induced, the ranking

of qij must respect the ranking in (7) and that of rij the converse order. This clearly means

that how costly it is to elicit information, it depends upon the curvature of S 0:

3.4 When the reduced problem solves (and when it does not) the

general problem

The joint relevance of the spread index and of the features of the surplus function will be-

come already evident in the two results that we state hereafter. They identify the conditions,

in terms of magnitude of ��=�� and curvature of S 0; under which the list of quantities char-

acterized in Lemma 4 as the solution to �0; solves the general problem � as well, in contrast

with those under which this is not the case.

Lemma 5 At the solution to �; type HH and type HL are assigned the production levels in

Lemma 4 only if the spread index is "small" i.e.,

��

��
<

1
�
+ (�� �)

�

2 +

�
1��

�
���1� 
1 � (1� �)�
2 + �

1��

���� : (14)

Then, q
HH

> q
HL

and qHL > qHH : Otherwise, qHL = qHH and qHL = qHH :
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The solution in Lemma 4 applies to � as long as (14) is satis�ed. When (14) is not, the

production level of type HL is pooled with that of type HH in either state. This follows from

the di¢ culty that P faces in eliciting information from type LL. To see this, suppose that

the rents are such that � = 1 at optimum (i.e., �LL;1 > �LL;2): Then, P is concerned with

containing the rent that type LL grasps for not announcing HL (rather than HH); and needs

to consider that the quantity chosen for type HL in the bad state a¤ects the rents designed for

types LL and HH in opposite directions. As qHL is reduced, the former is contained, the latter

is raised. Of course, the convenience for P to reduce qHL depends upon the relative strength of

these two e¤ects, which is captured by the magnitude of the spread index. When the index is

large, meaning that the agency cost associated with the possibility of type LL overstating � is

important, relative to that associated with the possibility of type HH understating �; P would

like to decrease qHL below qHH ; in addition to �xing qHH < qHL: However, the rent conceded

for the report HH being relatively high, type LL would then display an incentive to overstate

both � and �: This contradiction can be viewed formally by observing that �LL;1 > �LL;2 is

equivalent to

��(rHH � rHL) > ��(qHH � qHL); (15)

hence to

(�� +��) (qHL � qHH) > (�� ���) (qHH � qHL); (16)

and that (16) is violated if qHL < qHH jointly with q
HH

< q
HL
: A similar contradiction is

found by supposing that, on the opposite, � = 0 at optimum (i.e., �LL;2 > �LL;1) so that P is

concerned with containing the rent that type LL grasps for not announcing HH (rather than

HL): Then, with ��=�� large, she would like to decrease q
HH

below q
HL
; which would yet

trigger the temptation of type LL to exaggerate �: This explains why, when ��=�� is so big

to violate (14), the best for P is to force types HL and HH to produce equal quantities in

both states.

Prior to stating the next result, it is useful to de�ne the value of the spread index for which

qLH = qHL in Lemma 4 as

� � (1� �
2) (1� �) + � (1� �)
�+ � (1� 
1) (1� �)

; (17)

and to notice that, at optimum,

� <

1
�
+ (�� �)

�

2 +

�
1��

�
���1� 
1 � (1� �)�
2 + �

1��

���� : (18)

To see why, consider that, whatever the size of the spread index, at the solution to �; type LH

is required to produce more than type HH in the bad state (qLH > qHH) : As long as (14) is

satis�ed so that qHL > qHH ; type LH can be required to produce either more or less than type

HL in the bad state. By contrast, when (14) is violated so that qHH � qHL; type LH is clearly
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assigned more output than type HL in the bad state. For production levels to be ranked in

this way at the solution, it must be the case that (18) holds, indeed.

Lemma 6 At the solution to �; types LH and HL are assigned the production levels in Lemma

4 only if S 0 is not very concave or, if it is, ��
��
6= �: Then, rLH > rHL and qLH > qHL: When S 0

is very concave, if (14) holds, then qLH = qHL for ��
��
< � and rLH = rHL for ��

��
> �; if (14)

does not hold, then rLH = rHL:

Having S 0 very concave means that P prefers not to induce much quantity dispersion, and is

especially concerned with keeping production levels close across types in the good state. Under

these circumstances, a particularly interesting situation arises in that an upward incentive

constraint is binding, at optimum, either for type HH or for type LL; which might be tempted

to declare LH: First suppose that the spread index satis�es (14) and is below �: Then, if the

solution in Lemma 4 were to apply, quantities would be such that qHL > qLH ; the pronounced

concavity of S 0 re�ecting the desire of P to set quantities such that qHL is raised above qLH more

than q
HL
lowered below q

LH
: Yet, in that case, the contract would not be incentive-compatible

as type HH would grasp a bonus of �� (qHL � qLH) by understating � and so pretending to
be more e¢ cient. To avoid this, P adjusts the production levels of types LH and HL such

that qLH = qHL: Next suppose that the spread index satis�es (14) and is above �: Then, if the

solution in Lemma 4 were to apply, quantities would be such that qLH > qHL; and P would

be concerned with removing the incentive of type LL to declare LH: This is made by choosing

production levels for types LH and HL such that rLH = rHL: Obviously, no issue arises when

��=�� exactly equals � and so qHL = qLH : Not surprisingly, as the spread index becomes so

large to violate (14) ; the only upward incentive constraint that remains relevant is the one

whereby type LL not be tempted to overstate �; and P still optimally �xes rLH = rHL:

4 Characterization of the optimal mechanism

We begin by identifying a �rst core feature of the optimal contract i.e., how the type-LL

rent is set depending upon the curvature of S 0: Taken together with Lemma 5 and 6, this result

will then enable us to classify the solutions that � attains in the various cases to be listed in

the sequel of the analysis.

Lemma 7 Suppose that (14) holds at the solution to �: Then, � < 1 if and only if S 0 is

"su¢ ciently" convex.

We know from Lemma 5 that �LL;1 and �LL;2 are not necessarily the same when (14) holds.

To identify the rent that is actually assigned to type LL, we need to consider the shape of S 0

as well. To see why, recall that having S 0 little convex (or concave) means that P prefers to

keep quantities close across types, especially (though not only) in the good state. Therefore,

as S 0 becomes less convex/more concave, the wedge between the HH- and the HL-production
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level is optimally decreased in either state, but at a higher rate in the good state, leading to

�LL;1 > �LL;2: This is why the relevant rent of type LL is �LL;1 as long as S 0 is concave or

little convex, but not otherwise. A numerical illustration of this result is provided here below.

Example 1 Consider the surplus function S(q) = aq � qb+1= (b+ 1) ; a; b > 0: S 0(q) is convex
for b < 1; linear for b = 1. When S 0 is almost linear (b � 1) ; according to Lemma 7; if (14)
is satis�ed, then � = 1 so that �LL;2 > �LL;1: Furthermore, in this case, according to Solution

5 below, 
1 > 0 together with 
2 > 0 i.e., �LH;1 = �LH;2: When b is strictly below 1; the

degree of convexity of S 0 may be "su¢ ciently" high in the sense of Lemma 7 for a di¤erent

solution to arise. Table 1 below summarizes numerical results for the case in which a = 15;

� = � = 0:3; �L = 4; �H = 5; �L = 3; �H = 3:3: Condition (14) holds for both values of b

considered. Instead, (15) holds for b = 1 but not for b = 0:5; in which case it can be said that

S 0 is "su¢ ciently" convex in the sense of Lemma 7:

b 
1 
2 Condition (14) ��(rHH � rHL) ��(qHH � qHL)
1 0:826 0:174 3:33 < 16:73 0:75 0:5

0:5 0:948 0:052 3:33 < 57:63 15 16:5

Table 1: Numerical results for S�linear and S�su¢ ciently convex

As equipped with the results in Lemma 4 to 7, we are now ready to show how the solution

to � speci�es according to whether the spread index satis�es or violates (14), and to whether

S 0 is "su¢ ciently" convex (in the sense of Lemma 7) or displays a di¤erent curvature. In

presenting the solutions that arise in the various cases, to avoid redundancy, we report the

optimal quantities only when the conditions under which Lemma 4 applies do not hold so that

the quantity solution is di¤erent.

To help the reader �x ideas, we provide a road map of Case 1 to 3 below in Figure 1 to

3, where we synthesize the temptations that, at the solution to �; are relevant, respectively,

for type LH; LL and HH as the marginal surplus function proceeds from very concave to

su¢ ciently convex (in horizontal) and the spread index increases up to the value identi�ed in

(14) (in vertical). This, of course, says which incentive constraints are binding.

Case 1: ��=�� small and S 0 concave (not close to linear)

We begin by considering the most complex situation, in which, as described in Lemma 6,

S 0 is very concave and types LH and HL are not assigned the production levels pinned down

in the reduced problem.

Solution 1 Suppose that (14) holds at the solution to �; and that S 0 is "very" concave. Then,
� = 1 and

(i) for ��
��
� 1��

�+�(1��) : 
1 = 0; 
3 such that rLL = rHL; and 
2 = 1� 
3;
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Figure 1: Relevant temptations for type LH in Case 1 to 3

Figure 2: Relevant temptations for type LL in Case 1 to 3

Figure 3: Relevant temptations for type HH in Case 1 to 3
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(ii) for 1��
�+�(1��) <

��
��
< 1���

�
: 
3 = 1;

(iii) for ��
��
� 1���

�
: 
2 = 0; 
3 such that qHH = qHL; and 
1 = 1� 
3:

In each of these scenarios, the production levels assigned to types HL and LH satisfy

S 0(q
HL
)� �H + �L � �1 =

�

1� �

�
1 + (1� 
1)

1� �
�

�
�� +

(1� 
2�) (1� �)
� (1� �) �� (19)

S 0(qHL)� �H � �L � �1 =
�

1� �

�
1 + (1� 
1)

1� �
�

�
�� � (1� �
2�) (1� �)

� (1� �) ��(20)

S 0(q
LH
)� �L + �H + �1 = 0 (21)

S 0(qLH)� �L � �H + �1 = 0; (22)

with �1 such that qLH = qHL; if ���� < �; and

S 0(q
HL
)� �H + �L � �2 =

�

1� �

�
1 + (1� 
1)

1� �
�

�
�� +

(1� 
2�) (1� �)
� (1� �) �� (23)

S 0(qHL)� �H � �L + �2 =
�

1� �

�
1 + (1� 
1)

1� �
�

�
�� � (1� �
2�) (1� �)

� (1� �) ��(24)

S 0(q
LH
)� �L + �H + �2 = 0 (25)

S 0(qLH)� �L � �H � �2 = 0; (26)

with �2 such that rLH = rHL; if ���� > �:

We learnt from Lemma 6 that, when S 0 is very concave, the quantity solution to � is not

that in Lemma 4. Depending upon how large the spread index is relative to � (and except for
��
��
6= �); one has either qLH = qHL or rLH = rHL: The need to satisfy this additional constraint

induces further distortions in the production levels assigned to types HL and LH; which are

now characterized by (19) - (22), in the former case, and by (23) - (26), in the latter. Besides,

Solution 1 has implications in terms of the exact rents that P assigns. The three scenarios it

includes di¤er according to the incentives to cheat of type LH; which receives �LH;2 in (i) ;

�LH;4 in (ii) ; �LH;1 in (iii) : In scenarios (i) and (iii) the accruing rent equals �LH;4; whereas

in scenario (ii) the rent is strictly larger than the potential bene�t from any available lie. This

means that P seeks to contain the rent that type LH grasps for not announcing HL or LL in

(i) ; HL in (ii) ; HL or HH in (iii) : To see why, recall that a decrease in qHL has opposite

e¤ects in the rents that P concedes for not being announced LL or HH untruthfully, and that

which e¤ect dominates depends upon the magnitude of the spread index. Recall as well that,

on e¢ ciency grounds, a pronounced concavity of S 0 expresses the preference of P for keeping

quantities close across types, and more in the good than in the bad state. For ��=�� very

low, it is unnecessary to decrease qHL largely below qLL; relative to how much qHL is set below

q
LL
; in order to contain the rent for not being reported LL (rather than HL); as type LH

would gain little from overstating � (in addition to understating �): The best for P is to set

the HL- and the LL-quantities close enough to have rHL = rLL; meaning that preventing type
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LH from announcing HL is just as costly as preventing it from announcing LL: Similarly, for

��=�� relatively high, it is unnecessary to raise qHL largely above qHH ; relative to how much

q
HL

is �xed below q
HH
; in order to contain the rent for not being reported HH (rather than

HL); as type LH would gain little from understating � (in addition to overstating �): The best

for P is to �x the HL- and the HH-quantities close enough to have qHL = qHH ; meaning that

discouraging type LH from declaring HL is just as costly as discouraging it from declaring

HH: When the spread index takes values as in (ii) ; overstating � is nearly as attractive as

understating �; and HL remains the sole relevant temptation for type LH:

For the same range of values of the spread index, the solution becomes "more standard"

when S 0 is not very concave because, then, there is no longer any type willing to mimic some

more e¢ cient type, and the quantities in Lemma 4 are such that qLH > qHL and rLH > rHL: For

type LH; initially, relevant incentive constraint is that whereby it not be tempted to declare

HL; leading to the solution here below.

Solution 2 Suppose that (14) holds at the solution to �; and that S 0 is "su¢ ciently" (though
not very) concave. Then, Solution 1 still applies, except that types LH and HL are assigned

the production levels reported in Lemma 4 (�1 = �2 = 0) :

Then, as the concavity of S 0 gets progressively less pronounced, and the di¤erences qHL�qHH
and rHL � rLL reduce (as explained), the other incentive constraints of type LH; whereby it
not be attracted by the contractual o¤ers designed for types HH and LL; become relevant as

well. This leads to the next two solutions.

Solution 3 There exist some degrees of concavity of S 0; less pronounced than required for
Solution 2 to arise, and some �1 2

�
1��

�+�(1��) ;
1���
�

�
such that, at the solution to �; � = 1 and


3 > 0 together with either 
1 > 0 and 
2 = 0 (if
��
��
> �1) or 
1 = 0 and 
2 > 0 (if

��
��
< �1):


3; 
1 and 
2 are pinned down as in Solution 1.

Solution 4 Suppose that S 0 is less concave than required for Solution 3 to arise, though not
close to linear. Then, at the solution to �; � = 1; 
2 and 
3 such that qHL = qHH and

rHL = rLL; and 
1 = 1� 
2 � 
3:

Case 2: ��=�� small and S 0 (almost) linear

Case 2 includes one sole solution.

Solution 5 Suppose that (14) and (15) hold at the solution to �; and that S 0 is either almost
linear or linear. Then, � = 1; 
1 such that

��(qHH � qHL) = ��(rLL � rHL); (27)


2 = 1� 
1 and 
3 = 0:
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Type LH is assigned the same rent for not declaring HH and LL (i.e., as from (27),

�LH;1 = �LH;2): By contrast, HL is no longer an attractive lie for this type. The reason is

that, when S 0 is (almost) linear, P does not care about keeping qHL larger than qHH and rHL
larger than rLL: The temptation to report HL is thus removed by �xing production levels

such that qHH > qHL and rLL > rHL: Nevertheless, P is unwilling to set qHH and rLL widely

above qHL and rHL; respectively. Actually, (quasi-)linearity of S 0 means that P prefers the

spread between production levels of types HL and HH and of types HL and LL to be not too

di¤erent in the two states. Therefore, e¢ ciency is optimally traded-o¤ against rent-extraction

purposes by choosing quantities such that, for type LH; announcing LL is exactly as appealing

as announcing HH:

As S 0 becomes more convex, one might conjecture that either of the di¤erences qHH � qHL
and rLL � rHL increases faster than the other, hence that (27) is no longer satis�ed. On the
other hand, the raise in qHH � qHL involves that (16) tightens, in turn. One thus wonders
whether a solution can arise at which (27) is violated whereas (16) holds. The next lemma

clari�es this point.

Lemma 8 For any given degree of convexity of S 0; when the spread index is close to 1; at the
solution to � : 
1 > 0; 
2 > 0; 
3 = 0 and � = 1: For higher values of the spread index (though

still such that (14) holds), 
1 is higher, 
2 lower, and the condition (16) under which � = 1

tighter. There exists no solution at which either 
1 = 1 and � = 1:

We �rst provide a numerical illustration for this result, and then discuss it.

Example 2 Consider the surplus function used in Example 1; and take the same values of the
parameters with the following two exceptions: b is �xed equal to 0:5; �H varies (together with

��=��) as shown in Table 2 below. As from Example 1; (15) is violated for �H = 3:3: Instead,

it is not for �H = 3:6 and �H = 3:9 i.e., when ��=�� takes a lower value.

�H ��=�� 
1 
2 ��(rHH � rHL) ��(qHH � qHL)
3:9 1:11 0:47 0:53 122 58:5

3:6 1:66 0:675 0:325 57 41

3:3 3:33 0:948 0:052 15 16:5

Table 2: Numerical results for increasing values of the spread index

From Lemma 7, we learnt what happens to (15) as S 0 becomes more convex, for any

given value of the spread index. That is, (15) initially tightens and, as soon as S 0 becomes

"su¢ ciently" convex, it is no longer satis�ed. Additionally, Lemma 8 tells us what happens

to (15) as the spread index varies, given the curvature of S 0: Speci�cally, (15) becomes more

stringent as the spread index increases above 1: At the same time, type LH displays stronger

incentives to exaggerate �; relative to understating �; meaning that 
1 raises at optimum. Yet,

according to Lemma 8, 
1 cannot reach 1 unless (15) is violated. Because (15) tightens also as
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S 0 becomes more convex, it must be the case that the solution that follows Solution 5 arises

for S 0 "su¢ ciently" convex in the sense of Lemma 7.

Case 3: ��=�� small and S 0 "su¢ ciently" convex

When S 0 is su¢ ciently convex, we distinguish two situations. As one could expect on the

basis of the previous analysis, as long as S 0 is not very convex, HL and HH are both relevant

temptations for type LL; HH remains the sole relevant temptation when the convexity of S 0

becomes very pronounced. Again, this is explained by the increasingly stronger preference that

P displays for containing quantity distortions, especially for more e¢ cient types (hence, for

type HH relative to type HL): The next two solutions thus arise.

Solution 6 Suppose that (14) holds at the solution to �; and that S 0 is "su¢ ciently" but not
very convex. Then, � > 0 and such that rHH = rLL; together with 
1 > 0 and 
2 > 0 as pinned

down in Solution 5; and 
3 = 0:

Solution 7 Suppose that (14) holds at the solution to �; and that S 0 is more convex than
required for Solution 6 to arise. Then, � = 0 together with 
2 = 1:

Case 4: ��=�� large

To complete the analysis, we now turn to explore the case in which the spread index is

su¢ ciently large to violate (14). From Lemma 5 we know that, in this case, type HL is

optimally required to provide the same output as type HH in either state, production levels of

these types being no longer characterized as in Lemma 4. Except for this remarkable aspect,

the solutions to � that can be regrouped in Case 4 do not display very di¤erent features from

those previously presented. In short, for S 0 very concave, some upward incentive constraint is

binding, as in Solution 1 (Case 1). As S 0 moves from su¢ ciently concave to almost linear and

then to su¢ ciently convex, relevant temptations of type LH evolve from HL (as in Case 1)

to HH and LL (as in Case 2), and then to LL (as in Solution 7, Case 3). In presenting the

solutions formally, we omit the characterization of the HL-quantities, which are pooled with

those designed for type HH: We further omit the quantities assigned to types LL and LH;

which are pinned down as in Lemma 4, with the sole exception of Solution 8 for type LH:

Lastly, the value of � is neglected as, with q
HL

= q
HH

and qHL = qHH ; the rent accruing to

type LL always amounts to ��qHL = ��qHH :

Solution 8 Suppose that (14) is violated at the solution to �; and that S 0 is su¢ ciently concave.
Then, 
1 = 1: The production levels assigned to type HH satisfy

S 0(q
HH
) = �H � �H +

�

(1� �) (1� �)�� +
1

1� ��� + �3 (28)

S 0(qHH) = �H + �H +
�

(1� �) (1� �)�� �
1

1� ��� � �3 (29)
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those assigned to type LH

S 0(q
LH
) = �L � �H � �3 (30)

S 0(qLH) = �L � �H + �3; (31)

with �3 > 0 and such that rHH = rLH if S 0 is very concave, and �3 = 0 otherwise.

Solution 9 Suppose that (14) is violated at the solution to �; and that S 0 is (almost) linear.
Then, 
2 is such that rLL = rHH ; 
1 = 1 � 
2 and 
3 = 0: The production levels assigned to
type HH satisfy

S 0(q
HH
) = �H � �H +

�

(1� �) (1� �)�� +
1� 
2�
1� � �� (32)

S 0(qHH) = �H + �H +
�

(1� �) (1� �)�� �
1� 
2�
1� � �� (33)

with 
2 such that rLL = rHH :

Solution 10 Suppose that (14) is violated at the solution to �; and that S 0 is su¢ ciently
convex. Then, 
2 = 1: The production levels assigned to type HH satisfy

S 0(q
HH
) = �H � �H +

�

(1� �) (1� �)�� +�� (34)

S 0(qHH) = �H + �H +
�

(1� �) (1� �)�� ���: (35)

5 Results, interpretation and discussion

The analysis developed so far makes it clear that the characteristics of the marginal surplus

function are key to determining the features of the optimal multidimensional-and-sequential

screening mechanism. Not only the curvature of S 0 dictates the implications, in terms of

e¢ ciency, that are associated with the quantity decisions of P. It also says which incentives to

lie P needs to be concerned with while choosing the allocation.

Proposition 1 For any given value of the spread index, as S 0 becomes less concave/more
convex, information rents and production levels in the optimal mechanism re�ect increasingly

stronger incentives to mimic less ine¢ cient types:

� for type LL : HL in Case 1 and 2; HL together with HH and then HH in Case 3;

� for type LH :

�with (14) satis�ed: HL (possibly, together with HH and/or LL) in Case 1; HH

and LL in Case 2 and Solution 6; Case 3; LL in Solution 7; Case 3;

�with (14) violated: HL and HH in Solution 8; HL; HH and LL in Solution 9; LL

in Solution 10:
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On the one hand, the shape of S 0 dictates how dispersed production levels should be on

an e¢ ciency ground. As we explained, little dispersion is desirable when S 0 is very concave

and increasingly more dispersion as S 0 becomes less concave/more convex. On the other hand,

from a rent-extraction perspective, P prefers to choose production levels relatively close both

across types and between states of nature, because this makes �rst-stage cheating less appeal-

ing. Therefore, moving from concavity to convexity, the trade-o¤ between rent-extraction and

e¢ ciency, the latter being expressed in expected terms over the two possible productions, is

initially loose and then progressively exacerbated. In a unidimensional framework, whether

sequential or not, only one temptation to cheat for each type (excluding the least e¢ cient one)

would matter in determining the allocation. One would not be faced with a multiplicity of

relevant cases, and the various solutions would collapse onto a unique solution. The shape of

S 0 would play no role from this perspective. In a multidimensional framework where screening

did not occur sequentially, quantities would be determined at the �rst stage, one for each type.

In that case, the e¢ ciency losses associated with quantity distortions would not be evaluated

in expected terms. Once again, the shape of S 0 would be irrelevant in the identi�cation of

the rents to be optimally assigned to the various types, and all cases/solutions to � that are

di¤erentiated according to the curvature of S 0 would collapse onto one single case/solution. By

this we do not mean that, in multidimensional screening problems that are not sequential, the

principal�s preferences never a¤ect contractual features. Sometimes this occurs, yet in di¤erent

ways. In environments where the agent exerts two distinct activities for the principal and

knows the cost of each activity privately, it is the preference symmetry across activities (rather

than the shape of the marginal surplus function) that matters in the optimal contractual choice

(Armstrong and Rochet [2]).

The result in Proposition 1 may sound slightly abstract. In fact, we can identify at least

two simple interpretations for it.

To begin with, P can be viewed as the regulator of some industry, concerned with maximiz-

ing expected consumer surplus. Then, the marginal surplus function is the inverse demand func-

tion. For instance, in Example 1 and 2, the inverse demand function is S 0 (q) � p (q) = a� qb;
concave in q if b > 1; linear if b = 1; convex if b < 1: It is immediate to check that, in this

case, all else equal, the direct demand, namely q (p) = (a� p)1=b ; is less price-elastic the larger
b; for any given p: This evidences one �rst relevant aspect i.e., the move from concavity to

linearity to convexity corresponds, in fact, to a shift from a more to a less price-elastic de-

mand. When b is large, thus demand is little elastic, consumers are ready to pay more for

not renouncing to some given amount of the product. Therefore, in principle, when faced with

a little elastic demand, the regulator should design a policy that prevents consumption from

diverging signi�cantly from the FB quantity level because that would come with an important

surplus loss. This is in line with the prediction of our model that, at optimum, P becomes

less prone to distort production levels as S 0 switches from concave to convex and, to avoid

that sacri�ce, she tolerates more important agency costs (i.e., she concedes rents for remov-

ing incentives to mimic less ine¢ cient types). Moreover, the regulator being informed neither
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about the type of the agent/�rm nor about the �nal state of nature, at the time when she

designs the policy, she does not know yet the exact point, along the demand curve, at which

the agent will ultimately operate. To see why this is important, consider that, for any given

b in our example, consumers are ready to pay more for escaping further reduction when the

quantity is small than they would if the initial quantity were big. This involves that letting

consumption diverge from the FB output level when the latter is large wastes more surplus

than it does when it is small. Remarkably, this "local" e¤ect is more pronounced the larger b:

Altogether, this suggests that, the regulator targeting consumer surplus in expected terms, the

exact output schedule cannot be properly structured, especially when demand is little elastic,

unless the surplus losses that would follow from distortions are traded-o¤ against one another,

depending upon the exact point where FB output levels lie along the demand curve. This

comes back to the other prediction of our model that, at optimum, P distorts production levels

less with a convex than with a concave marginal surplus function, particularly when she faces

little ine¢ cient types and the realized state is good, which are the circumstances under which

more output should be produced.

The very interest of the relationship between the curvature of the marginal surplus function

and the price-elasticity of market demand resides, perhaps, in that it evidences a way to make

functional use of the insights of our study along the current regulatory practice. Actually, in

markets where the demand function is vaguely known to regulators, the latter typically refer

to elasticity estimates, which can be formed with more reasonable accuracy when little infor-

mation is available about demand conditions. This suggests that, speci�cally in regulator/�rm

hierarchies where the information structure is as represented in our model, the regulator could

use elasticity estimates to identify the relevant information rents and �x output accordingly.

Another way to read the result in Proposition 1 emerges once S (q) is reinterpreted as

a utility function. According to the theory of consumption under uncertainty, an individual

whose marginal utility function (S 0 in our model) is convex with respect to consumption, is

prudent and engages in precautionary saving. This means that she would strongly dislike

to have very low consumption in the future, hence she saves more at present to avoid that

this outcome is realized. By contrast, an individual whose marginal utility function is concave,

takes a dissaving behaviour (see Leland [16] for a by-now classical contribution; for more recent

work, see Melegatti [17], for instance). In our framework, the case of convex marginal surplus

could be viewed as one in which the principal is prudent with respect to output provision,

that of concave marginal surplus as one in which the principal is not, and the presence of

uncertainty about the �nal cost realization as leading to a more or less precautionary attitude.

When the marginal surplus function is convex, the principal is especially concerned with the

output that she will be delivered at the second stage. Not only it should not be too little,

whatever the realized state. Also, production in the good state (i.e., less costly production)

should be privileged with respect to production in the bad state (i.e., more costly production).

The principal gives up more surplus at the �rst stage, in return for higher future production,

especially when a low cost is realized. When the marginal surplus function is concave, the
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principal is less concerned with output. She does not seek to ensure herself against the event

that a very small quantity be ultimately provided, even in the good state. She can thus retain

more surplus from the agent at the contracting stage.

Given the content of Proposition 1, and in the light of the explanations that we have

been providing, it should by now be clear that the screening problem that P tackles shares

no other notable similarity with the multidimensional screening problems previously explored

than the information rents associated with binding downward incentive constraints reported

in Lemma 3. We previously explained that the interdependence between qij and rij; which

are the counterpart for, but do not have the same nature as, the production levels of two

distinct activities in existing models, is the complication that causes the solution to be strictly

related to the curvature of S 0 in our framework. We further pointed out that, as S 0 becomes

less concave/more convex, P �nds it progressively more costly to distort quantities in the good

state relative to the bad state, involving that, for any given ij; rij should be raised, at optimum,

relative to qij: Taking Proposition 1 and all these considerations into account, the following

corollary can be stated.

Corollary 1 For any given value of the spread index, as S 0 becomes less concave/more convex,
the evolution of the optimal information rents re�ects the temptation to overstate � progressively

lessening, relative to the temptation to understate �:

It is further noteworthy that, among the various solutions to �; some display a few common

features with the sequential screening mechanism that would be optimal in a unidimensional

framework. First, this occurs when ��=�� is large, which is not surprising in the light of

Lemma 5, according to which P pools the production levels of the �H-types with respect to

the second dimension of private information. A second similarity shows up for whatever size

of the spread index, hence also for ��=�� small. This is perhaps less obvious, provided P

does design fully �exible production rules (i.e., di¤erentiates quantities with respect to both

� and �) when ��=�� is small. The similarity resides in that, in nearly all solutions, output

is �xed at the FB level for some low-expected-cost-type, which is the counterpart for the no-

distortion-at-the-top result in Riordan and Sappington [20] and Courty and Li [9]. In spite of

these common features, as long as �� > 0; the optimal mechanism in our setting never reduces

to the sequential screening mechanism that would be optimal if � were the sole piece of private

information.

Corollary 2 As long as �� > 0; there is no value of the spread index and no curvature of

S 0 for which the optimal mechanism collapses onto a unidimensional-and-sequential screening

mechanism:

� as long as (14) holds, the optimal output pro�le is fully separating for all ij 2 �; otherwise,
it is for types Lj; whereas pooling is induced for types Hj; 8j 2 fL;Hg ;

� in scenario (i) of Solution 1; quantities are distorted away from FB levels for both �L-

types; in all other solutions, only one such type is assigned the FB production levels.
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6 Ex-post participation constraints

We developed the analysis focusing on the case in which P makes sure that the agent breaks

even in expectation by choosing a policy that satis�es the �rst-stage participation constraint.

A more realistic situation would be that in which P warrants that the agent breaks even in all

possible states of nature. This would require to solve a new problem �ep; in which the ex-post

participation constraints

�ij � 0 (pc
ij
)

�ij � 0 (pcij)

replace (PCij) for all ij 2 �: In spite of the practical relevance, the introduction of these

constraints brings about analytical complications without a¤ecting the very structure of the

optimal mechanism in any signi�cant respect. This explains why we preferred to work with

the �rst-stage participation constraint in the �rst place.

To evidence the similarity with the optimal mechanism under � in a parsimonious manner,

we hereafter present the solution to �ep with reference to one speci�c situation, that in which

the spread index is small (according to (36) below), S 0 (almost) linear, and the sole binding

ex-post participation constraint is that of type HL in the bad state (see Appendix G for

mathematical details).

Solution 11 Suppose that, at the solution to �ep; (pcij) is binding for ij = HL and slack for
all ij 6= HL: Further suppose that the spread index is "small" i.e.,

��

��
<

1

1� 
1

�
1

�
� 
2 (1� �)� �

�
1 +

1� �
�

�L
��

��
; (36)

and that S 0 is (almost) linear. Then, the solution to �ep is pinned down as in Lemma 3 and 4;

with � = 1; 
1 satisfying (27) ; and 
2 = 1� 
1; except that

�HL = �LqHL

S 0(qHL) = �H + 2�L +
�

1� �

��
1 + 
2

1� �
�

�
�� � (1� 
2�)

1� �
��

��

�
:

Solution 11 is reminiscent of Solution 5, which was found to be optimal in � for ��=��

satisfying (14) and S 0 (almost) linear. The similarity rests on the circumstance that the same

incentive constraints are binding at the two solutions.

The observations that are made and the results that are found in other sequential (but

unidimensional) screening models cast doubts on the optimality of sequential screening when

ex-post participation constraints are imposed. Courty and Li [9] acknowledge that, when the

agent cannot be exposed to losses ex post, sequentiality yields no bene�t and the principal

should rather screen types ex post (footnote 8, p.706). In a more recent study, Krahmer and

Strausz [15] prove this formally. They further identify the reason why sequential screening is
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bene�cial, absent ex-post outside options, in that it relaxes participation (rather than incentive

compatibility) constraints. Both in Courty and Li [9] and in Krahmer and Strausz [15], as

essential aspect is that the agent�s �rst-stage information is a signal about the �nal state i.e., it

a¤ects the realization of the latter only stochastically. As a consequence, the number of possible

states remains unchanged even after the �rst-stage information is revealed. By contrast, in our

model, the agent�s �rst-stage information a¤ects the cost realization in a direct way: once

type ij is identi�ed, the �nal cost cannot take other values than �i � �j and �i + �j: That is,
conditional on the �rst-stage type being identi�ed, the set of possible realizations (and so the

set of incentive constraints to be satis�ed) shrinks signi�cantly. Under these circumstances,

sequential screening is still preferable to ex-post screening. We hereafter provide a numerical

example that illustrates the desirability of sequential screening with regards to the situation

to which Solution 11 refers.

Example 3 Take again the surplus function considered in Example 1 and 2: Let a = 15 and
b = 1 (S 0 linear). Further take � = 0:3; � = 0:2; �L = 4; �H = 5:2; �L = 3; �H = 3:8: Then,

the spread index equals 1:5 and satis�es (36) : At the solution to �ep; 
1 = 0:9 and 
2 = 0:1:

Table 3 below summarizes the results that are obtained in this environment under sequential

and ex-post screening, showing that the former yields a higher payo¤ to P.12

Sequential screening Ex-post screening

LH LL HH HL LH LL HH HL

q 14:8 13:7 13:13 7:65 14:8 13:8 13:48 12:1

q 7:2 8:3 5:53 7:52 5:37 5:37 5:37 5:37

� 33:8 31:6 22:6 22:57 34:5 31:17 23:1 20:4

W 36:16 30:81

Table 3: Comparison between sequential and ex-post screening

One natural application of our model with ex-post participation constraints is the award

of a contract for monopoly franchise, which is frequently made through an auction. Such

constraints are relevant when the contract is signed in an economic context characterized by

enforcement imperfections. Recent studies about contracts between governments and private

�rms for public service provision evidence how important non-enforceability is in the design of

public-private relationships (see, in particular, Guasch [14]). However, the private information

that the bidders hold at the auctioning stage is de�nitely not less problematic an aspect. Our

work contributes to the literature on the award of monopoly franchises by considering the

very realistic situation in which, at the bidding stage, auction participants and, in particular,

the �rm that ultimately wins the tender, know privately not only the expected value of the

project but also the entire value distribution. For the sake of completeness, in Appendix G.1

12In this particular example, under ex-post screening, all types are imposed the same quantity (namely, 5:37)
in the bad state. This is because the monotonicity condition qLL � qLH would be violated otherwise. Further
details are relegated to Appendix H.3.
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we report the main features of the optimal mechanism in the auction framework for the case

of S 0 (almost) linear. Recalling that the curvature of the marginal surplus function can be

interpreted in terms of price-elasticity of demand, the focus on the (almost-)linear case is

meant to capture the circumstance that, in markets for services of general interest, demand is

not highly sensitive to price variations.

7 Conclusion

We showed how to characterize and interpret the optimal screening mechanism in a principal-

agent relationship in which, at the contracting stage, the agent is privately informed about both

the expected value and the variability of the production cost and, at a later stage, he learns

the realized cost and produces some given good for the principal. This framework represents

a variety of real-world situations, such as regulatory and procurement contexts, in which the

cost of performing the concerned activity is uncertain when the contractual relationship begins

and the activity is not executed until after uncertainty is solved.

With this work, we contribute to the study of sequential screening problems, which has

recently gained signi�cant momentum in the literature, precisely in that we consider the truly

realistic case in which the agent holds private information on the whole set of possible values

of the parameters that matter in the relationship with the principal, rather than only on an

aggregate of those values. The predictions of the analysis evidence that, in this case, for in-

formation rents to be optimally structured and ordered across agent�s types, it is necessary

to carefully consider the preferences of the principal or, more generally, the preferences of the

economic players on behalf of whom the principal acts. This, for instance, means that, prior to

organizing auctions for monopoly franchises in frameworks of the kind that our model repre-

sents, governments and/or regulators should examine consumer preferences for the concerned

goods meticulously, and base the screening task �nely on the characteristics of those prefer-

ences. This is not beyond reach, in practice, as long as synthetic, yet instructive, indices (such

as the elasticity to price) are available.
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A Preliminary analysis

A.1 Proof of Lemma 3
Using the de�nitions of qij and rij; (3) is rewritten as

�ij =
1

2
(tij + tij)� (�iqij � �jrij); 8ij 2 �:
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Based on this expression, we reformulate the �rst-stage incentive constraints as follows:

�LL � �HL +��qHL (IC1)
�LL � �LH ���rLH (IC2)
�LL � �HH +��qHH ���rHH (IC3)
�HL � �LL ���qLL (IC4)
�HL � �HH ���rHH (IC5)
�HL � �LH ���qLH ���rLH (IC6)
�LH � �HH +��qHH (IC7)
�LH � �LL +��rLL (IC8)
�LH � �HL +��qHL +��rHL (IC9)
�HH � �LH ���qLH (IC10)
�HH � �HL +��rHL (IC11)
�HH � �LL ���qLL +��rLL: (IC12)

Using the downward incentive constraints (IC1), (IC3), (IC7) to (IC9), and (IC11), and
taking at least one downward incentive constraint to be binding for each type, except HL;
together with PCHL; the rents in (9a) to (9d) are obtained. The values of � and 
z; 8z 2
f1; 2; 3g ; are to be found at the solution to �: In each of the proofs of the various solutions
below, it is shown that, with the rents in (9a) to (9d), ICi

0j0

ij is satis�ed for all ij; i0j0 2 �:

A.2 Proof of Lemma 4
Using the rents in Lemma 3, we rewrite the objective function of P as:

X
ij2�

Eij

�
1

2

�
S(q

ij
) + S(qij)

�
� (�iqij � �jrij)

�
(37)

��� [���qHL + (1� �) (��rHL +��qHH ���rHH)]
� (1� �) (1� �)��rHL
��(1� �) f
1 (��rHL +��qHH)
+
2 [���qHL + (1� �) (��rHL +��qHH ���rHH) + ��rLL]
+
3 (��qHL +��rHL)g :

Optimization with respect to quantities yields the �rst-order conditions listed in Lemma 4.

A.3 Proof of Lemma 5
Denote

� (�) �
1
�
� (� � �)

�

2 +

�
1��

�
1� (
1 + 
2) + 
2� �

(1��)�
1��

:

The numerator of � (�) is strictly positive so that � (�) 6= 0. The denominator is either positive
or negative depending upon the value of �: Suppose that � is such that � (�) > 0: Then, from
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Lemma 4, q
HH

> q
HL
if and only if

��

��
> �� (�) ; (38)

which is true. Moreover, qHL > qHH if and only if � (�) > 1 and

��

��
< � (�) : (39)

Suppose now that � (�) < 0: Then, from Lemma 4, qHL > qHH and so, equivalently,

��

��
> � (�) : (40)

Moreover, q
HH

> q
HL
if and only if �� (�) > 1 and

��

��
< �� (�) : (41)

Therefore, when ��
��
< j� (�)j or, equivalently, (14) holds, the quantity solution in Lemma 4

satis�es (38) and (39) for � (�) > 0; and (40) and (41) for � (�) < 0:We thus have q
HH

> q
HL

together with qHL > qHH :
Consider now the case of ��

��
� j� (�)j : Take �rst � (�) > 0. Then, (38) is satis�ed but (39)

is not so that, under Lemma 4, q
HH

> q
HL

and qHL � qHH : It follows that (16) is violated
with strict inequality:

(�� +��) (qHL � qHH) < (�� ���) (qHH � qHL): (42)

However, this is equivalent to �LL;1 < �LL;2 and so to � = 0: As � (0) < 0; the initial hypothesis
leads to a contradiction. Take now � (�) < 0: Then, (40) holds but (41) does not, meaning
that qHL > qHH and qHH � qHL: It implies that (16) is satis�ed, meaning that �LL;1 > �LL;2
and so � = 1: However, � (1) > 0; which contradicts the initial hypothesis. Therefore, when
��
��

� j� (�)j or, equivalently, (14) is violated, � is such that ��
��

= j� (�)j ; implying that
q
HH

= q
HL
and qHL = qHH :

A.4 Proof of Lemma 6
Under the assumption that S 0 is very concave, it follows from Lemma 7 that � = 1. From

Lemma 4, for � = 1 we �nd:

S 0(q
HL
)� S 0(q

LH
) = �� +�� (43)

+
�

1� �

��
1 + (
2 + 
3)

1� �
�

�
�� + (1� �
2)

1� �
��

��

�
S 0(qHL)� S 0(qLH) = �� ��� (44)

+
�

1� �

��
1 + (
2 + 
3)

1� �
�

�
�� � (1� �
2)

1� �
��

��

�
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Thus, q
LH

> q
HL
: First suppose that qHL < qLH ; which is equivalent to

��
��

> �: Then,
rLH � rHL if and only if S 0 is not very concave. Suppose now that qHL > qLH ; which is
equivalent to ��

��
< �: Then, qLH � qHL if and only if S 0 is not very concave

Hence, when ��
��
6= � at the solution, and S 0 is very concave, either qLH � qHL or rLH � rHL

is violated. The proof of Solution 1 below shows that these conditions are both necessary for
the incentive constraints in � to be all satis�ed. Hence, the quantities assigned to HL and
LH are not as pinned down in Lemma 4. From the proof of Solution 1 below, when S 0 is very
concave, rLH = rHL for ��

��
> � and qLH = qHL for ��

��
< �:

B Proof of Lemma 7
From Lemma 5, with (14) satis�ed, q

HH
> q

HL
together with qHL > qHH : Using Lemma 4,

we calculate

[S 0(q
HL
)� S 0(q

HH
)]� [S 0 (qHH)� S 0 (qHL)] = 2

�
�
2 + 
3 �

(1� �)�
1� �

�
�

(1� �)���: (45)

We look for the conditions under which (15) is satis�ed and so � = 1: Replacing � = 1; (45) is
rewritten as

[S 0(q
HL
)� S 0(q

HH
)]� [S 0 (qHH)� S 0 (qHL)] = 2

� (
2 + 
3)

� (1� �) ��; (46)

from which we deduce that, as long as 
2 + 
3 > 0; qHL � qHH > q
HH

� q
HL

(equivalently,
qHL > qHH) if and only if S 0 is su¢ ciently concave. Moreover, the di¤erence qHH � qHL
increases as S 0 becomes less concave/more convex. With qHL > qHH ; (15) holds as long as S 0

is su¢ ciently concave. The proof of Solution 5 below shows that (15) holds as well when S 0

is (almost) linear and the di¤erence qHH � qHL is positive but small. (15) is violated for S 0
su¢ ciently convex that the di¤erence qHH � qHL is large enough to violate (16) : Finally, when
S 0 is su¢ ciently concave and qHL > qHH ; it follows from Lemma 3 that 
3 > 0. The proof of
Solution 5 shows that 
1 < 1 for S

0 not su¢ ciently convex, which con�rms that 
2 + 
3 > 0:

C Case 1

C.1 Proof of Solution 1
From Lemma 7, � = 1: Using Lemma 3 and � = 1; we deduce that 
3 > 0 if and only if

qHL � qHH and rLL � rHL; with 
3 = 1 if the two inequalities hold strictly. From Lemma 7,
qHL > qHH when S 0 is su¢ ciently concave and (14) is satis�ed. Using Lemma 4, we �nd for
� = 1 :

S 0(q
HL
)� S 0(q

LL
) =

�
1 +

�

1� �

�
1 +

1� �
�

(
2 + 
3)

��
�� +

(1� 
2) (1� �)
� (1� �) �� (47)

S 0(qHL)� S 0(qLL) =

�
1 +

�

1� �

�
1 +

1� �
�

(
2 + 
3)

��
�� � (1� 
2) (1� �)

� (1� �) �� (48)
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Hence, q
LL
> q

HL
: Moreover, qLL � qHL if and only if

��

��
� 
2 (1� �)
�+ 
1� (1� �)

: (49)

Supposing that (49) holds and computing

[S 0(q
HL
)� S 0(q

LL
)]� [S 0 (qHL)� S 0 (qLL)] = 2

(1� 
2) (1� �)
� (1� �) ��; (50)

we deduce that, when 
1 + 
3 > 0 and (49) holds, rHL > rLL if and only if S
0 is su¢ ciently

concave. When (49) does not hold, rLL > rHL whatever the shape of S 0:
Overall, when both (14) and (49) hold, it is qHL > qHH together with rHL > rLL; meaning

that 
3 = 1: Substituting 
3 = 1 into (14) and (49) yields

��

��
2
�

1� �
�+ � (1� �) ;

1� ��
�

�
: (51)

When ��
��
� 1���

�
(14) does not hold for 
3 = 1: Suppose that it does hold for some 
3 < 1.

(49) is satis�ed, implying that rHL > rLL and so 
2 = 0: Moreover, the proof of Solution 5
below shows that 
1 6= 1 whenever S 0 is concave. Thus, when ��

��
� 1���

�
and, at the same

time, (14) holds, 
3 > 0 and 
1 > 0 so that qHL = qHH : (14) is rewritten as
��
��
< 1���

�
3
and it

is feasible with ��
��
� 1���

�
:

When ��
��

� 1��
�+�(1��) ; (49) is violated for 
3 = 1: If (14) holds, then qHL > qHH and so


1 = 0: Moreover, the proof of Solution 5 below shows that 
2 = 1 only if S
0 is convex. Hence,


3 > 0 and 
2 > 0; meaning that rHL = rLL:

C.1.1 Check the incentive constraints in �

From S 0 concave and (14) satis�ed, it follows from Lemma 7 that (15) holds. Hence (IC1) is
binding and (IC3) is slack. (IC2) is rewritten rLH � rHL, which is satis�ed if ���� � �; otherwise
is satis�ed when S 0 is not very concave (see Lemma 6). (IC4) is rewritten qLL � qHL. From
(48), q

LL
> q

HL
: If (49) holds, then qLL > qHL and (IC4) is satis�ed. If (49) does not hold, then

qLL � qHL and so (IC4) is satis�ed if and only if S 0 is not very concave. (IC5) is equivalent
to rHH � rHL; which is satis�ed because qHH > q

HL
and, since (14) holds by assumption,

qHL > qHH : (IC6) is rewritten �� (qLH � qHL) � �� (rHL � rLH) ; which is satis�ed when so
are (IC2) and (IC10). (IC7) and (IC8) are equivalent to qHL � qHH and rHL � rLL; both
being satis�ed because 
3 > 0: (IC10) is rewritten as qLH � qHL, which is satis�ed if ���� � �;
otherwise is satis�ed when S 0 is not very concave (see Lemma 6). (IC11) is satis�ed because
it was assumed to be binding in deriving quantities of Lemma 4. (IC12) is equivalent to
��qLL +��rHL � ��qHL +��rLL; and is satis�ed when so are (IC4) and (IC8).

C.1.2 Quantity solution when (IC2), (IC4) or (IC10) is violated

From Lemma 4 we have

S 0 (qLH)� S 0(qLL) =
�
1 + 
2

1� �
�

�
��; (52)

from which qLL > qLH :
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Suppose �rst that ��
��
2
�

1��
�+�(1��) ;

1���
�

�
(scenario (ii) in Solution 1). We previously found

that 
3 = 1 and that qHL > qHH ((14) satis�ed). Replacing 
3 = 1 into (17) ; we �nd

� = 1���
�+�(1��) ; which belongs to

�
1��

�+�(1��) ;
1���
�

�
:

Take ��
��
2
�

1���
�+�(1��) ;

1���
�

�
i.e., ��

��
> �; so that qLH > qHL: Then, the bad-state quantities

in Lemma 4 are ranked as
qLL > qLH > qHL > qHH : (53)

Suppose that (53) holds at the solution to �: Then, (IC4) and (IC10) are slack, (IC2) is
binding. Then, the most natural guess is that (IC2) is binding together with the constraints
that are binding in �0: In particular, the binding constraint (IC1) is rewritten as rHL = rLH :
Reformulating the problem as the maximization of �0 subject to rHL = rLH ; and associating
the multiplier �2 > 0 to this constraint, the optimal quantities of types LH and HL are pinned
down as in (23)� (25) for 
3 = 1. For types HH and LL quantities are still those in Lemma 4
for � = 1 and 
3 = 1. For types LH and HL production levels are such that rHL is decreased
below and rLH raised above the respective levels under Lemma 4. Speci�cally, qLH is decreased
and qHL raised. Moreover, because qLH > qHL at optimum, and �2 is such that rHL = rLH ; it
follows that it is still qLH > qHL at optimum. Therefore, (53) is still the ranking of optimal
bad-state quantities. Checking again the incentive constraints of �; it follows trivially that
they are all satis�ed.
Take now ��

��
2
�

1��
�+�(1��) ;

1���
�+�(1��)

�
i.e., ��

��
< �; so that qHL > qLH : Then, the bad-state

quantities in Lemma 4 are ranked as

qLL > qHL > qLH > qHH : (54)

As above, suppose that (54) holds at the solution to �: Then, (IC2) and (IC4) are slack,
(IC10) is binding. Then, the most natural guess is that (IC10) is binding together with the
constraints that are binding in �0: In particular, the binding constraint (IC11) is rewritten as
qHL = qLH : Reformulating the problem as the maximization of �0 subject to qHL = qLH ; and
associating the multiplier �1 > 0 to this constraint, the optimal quantities are pinned down
as in (19) � (21) for 
3 = 1: For types HH and LL quantities are still those in Lemma 4.
For types LH and HL production levels are such that qHL is decreased below and qLH raised
above the respective levels in Lemma 4. Hence, qLH is raised and qHL is decreased. Because,
at optimum, q

LH
> q

HL
; and �1 is such that qHL = qLH ; it is still qHL > qLH : Therefore, (54)

is still the ranking of optimal bad-state quantities. Checking again the incentive constraints in
�; it follows trivially that they are all satis�ed.
Suppose now that ��

��
� 1���

�
(scenario (iii) in Solution 1). We know that now 
3 > 0;


1 > 0 so that qHL = qHH ; and 
2 = 0: To have qHL = qHH ; (14) must still be valid so that

qHL > qHH : This is equivalent to
��
��
< 1���

�
3
: Hence, the interval

h
1���
�
; 1���
�
3

�
does exist, and

the magnitude of 
3 is such that qHL = qHH : Replacing 
2 = 0; (17) becomes � =
1���

�+
3�(1��)
:

With ��
��
2
h
1���
�
; 1���
�
3

�
; both ��

��
< � and ��

��
> � are feasible.

First take ��
��

> �; in which case qLH > qHL under Lemma 4. Recalling also from (52)
that qLL > qLH ; the bad-state quantities are ranked as in (53) : As above, supposing that (53)
holds at the solution to �; the optimal quantities of types LH and HL are pinned down as in
(23) � (26) ; but with 
2 = 0 in this case. For types HH and LL; quantities are still pinned
down as in Lemma 4 with � = 1 and 
2 = 0: The production levels of types LH and HL are
such that rHL is decreased below and rLH raised above the respective levels under Lemma 4.
Speci�cally, qLH is decreased and qHL raised. Moreover, because qLH > qHL at optimum, and
�2 is such that rHL = rLH ; it follows that it is still qLH > qHL at optimum. Therefore, (53) is
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still the ranking of optimal bad-state quantities. Checking again the incentive constraints in
�; it follows trivially that they are all satis�ed.
Second take ��

��
< �; so that qHL > qLH : Then, the bad-state quantities in Lemma 4 are

ranked as in (54). As above, supposing that (54) holds at the solution to �, the optimal
quantities of types HH and LL are still those pinned down in Lemma 4 with � = 1 and

2 = 0: The production levels of types LH and HL are such that qHL is decreased below and
qLH raised above the respective levels under Lemma 4. Speci�cally, qLH is raised and qHL is
decreased, as indicated by �1 > 0 in (19) � (21). Because, at optimum, q

LH
> q

HL
; and �1

is such that qHL = qLH ; it is still qHL > qLH : Therefore, (54) is still the ranking of optimal
bad-state quantities. Checking again the incentive constraints in �; it follows trivially that
they are all satis�ed.
Lastly, suppose that ��

��
� 1��

�+�(1��) (scenario (i) in the Solution 1). In this case, 
3 > 0;

2 > 0 and 
1 = 0 so that rHL = rLL: Then, (49) is necessarily satis�ed so that qLL > qHL:
The range of values of ��

��
for which ��

��
� 1��

�+�(1��) and, simultaneously, (14) and (49) hold, is
identi�ed as �


3 (1� �)
�+ � (1� �) ;min

�
1� � [1� 
3 (1� �)]

�
;

1� �
�+ � (1� �)

��
:

With 
1 = 0 (17) becomes � �
1��[1�
3(1��)]
�+�(1��) : As long as ��

��
is drawn on the above range, both

��
��
< � and ��

��
> � are feasible. First take ��

��
> � and so qHL < qLH : Then, once more, the

solution is as found under (53) ; here with � = 1; 
1 = 0; and �2 such that rHL = rLL: Next
take ��

��
< �: Then, the solution is as found under (54) ; here with � = 1; 
1 = 0; and �1 such

that qHL = qLL:

C.2 Proof of Solution 2
Recall from Solution 1 that, when (14) holds at the solution to �; and S 0 is su¢ ciently

concave, under Lemma 4, either qHL > qHH or rHL > rLL; or both, so that 
3 > 0: We also
found that, for S 0 very concave, the quantities in Lemma 4 do not satisfy either qLH � qHL or
rLH � rHL; and the production levels of types LH and HL are not pinned down as in Lemma
4. They are such that either qHL = qLH or rHL = rLH : Based on Lemma 4, for � = 1 we
compute

S 0(q
HH
)� S 0(q

LH
) = S 0(qHH)� S 0(qLH) =

�
1 + 
1

�

1� �

�
��; (55)

from which qLH > qHH : This inequality is still valid in Solution 1, provided in Solution 1 qLH is
raised relative to Lemma 4 (�1 > 0) : Therefore, we cannot have a solution in which qHL = qLH
together with qHH � qHL: When qHL > qHH in Solution 1 (scenarios (ii) and (iii)); we have
qLH = qHL > qHH for S 0 very concave, and qLH > qHL > qHH for S 0 su¢ ciently (but not very)
concave.
Under Lemma 4, we further have

S 0(q
LL
)� S 0(q

LH
) =

�
1 + 
2

1� �
�

�
��; (56)

from which q
LH

> q
LL
: Because it is also qLL > qLH (as from 52), rLH > rLL under Lemma

4. Moreover, when rHL = rLH in Solution 1, rLH is raised relative to Lemma 4 (�2 > 0) ; and
it is still rLH > rLL: Therefore, we cannot have a solution in which rHL = rLH together with
rLL � rHL: When rHL > rLL in Solution 1 (scenarios (i) and (ii)); we have rLH = rHL > rLL
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for S 0 very concave, and rLH > rHL > rLL for S 0 su¢ ciently (but not very) concave.
Overall, when S 0 is su¢ ciently concave to have rHL > rLL for the values of ���� in (i) and

(ii) of Solution 1, and qHL > qHH for the values of ���� in (ii) and (iii) of Solution 1, but not
very concave as required in Solution 1, so that qLH � qHL and rLH � rHL under Lemma 4, the
solution is pinned down as in Solution 1, but with �1 = �2 = 0:

C.3 Proof of Solution 3
Take (14) to hold and ��

��
2
�

1��
�+�(1��) ;

1���
�

�
: Further take S 0 su¢ ciently concave that, at

optimum, qHL > qHH together with rHL > rLL; as in Solution 1 and 2. Recall that, in these
situations, 
3 = 1: First consider qHL � qHH : From (46) ;, keeping 
2 + 
3 �xed, this di¤erence
decreases as S 0 becomes less concave. At some little degree of concavity of S 0; the condition
qHL > qHH stops holding. Next consider rHL � rLL: From (50) ;, keeping 
1 + 
3 �xed, this
di¤erence decreases as S 0 becomes less concave. At some little degree of concavity of S 0; the
condition rHL > rLL stops holding. Hence, with 
3 = 1 (as in in Solution 1), on decreasing
degrees of concavity of S 0, quantities in Lemma 4 indicate that there exists a solution in which
one of the inequalities qHL > qHH and rHL > rLL is not satis�ed and then, as S 0 becomes even
less concave; both of them are not satis�ed.
Suppose that ��

��
tends to 1��

�+�(1��) from above, meaning that qLL comes very close to qHL;
and so rHL � rLL is negative in the limit. On the other hand, qHL > qHH for S 0 su¢ ciently
concave. Next suppose that ��

��
tends to 1���

�
from below, meaning that qHH comes very

close to qHL and so qHL � qHH is negative in the limit. On the other hand, rHL > rLL for S 0
su¢ ciently concave. Then, resting on (46) and (50) ; the di¤erence qHL� qHH decreases as ��
increases, and is independent of ��; the di¤erence rHL� rLL decreases as �� increases, and is
independent of ��. Hence, 9�1 2

�
1��

�+�(1��) ;
1���
�

�
such that, for some less than "su¢ ciently"

concave S 0; rLL � rHL and qHL > qHH for ��
��
< �1; whereas rHL > rLL and qHH � qHL for

��
��
> �1:
We now show that, for the degrees of concavity of S 0 considered above, rLL = rHL when

��
��
< �1 (as in scenario (iii) of Solution 1) and qHH = qHL when ��

��
> �1 (as in scenario (i) of

Solution 1).
First suppose that ��

��
> �1:When S 0 is such that qHL = qHH for 
3 = 1; according to (46) ;

one could still have qHL > qHH if it were 
3 < 1: However, when qHL > qHH ; 
3 must be 1;
provided rHL > rLL: It means that qHL � qHH for any lower degree of concavity of S 0: Let us
now focus on qHL = qHH : As S 0 becomes less concave, according to (46) ; one could still have
qHL = qHH with a smaller value of 
2 + 
3: As 
2 = 0 (with rHL > rLL); this would mean to
have 
3 < 1 and 
1 > 0: Having qHL = qHH means that 
3 > 0 and 
1 > 0: Hence, there exists
some range of degrees of concavity of S 0 for which qHL = qHH :
Next suppose that ��

��
< �1: Resting on (50) (as on (46) above), we conclude that, for

rHL = rLL to be attained for some degrees of concavity of S 0 for which qHL > qHH ; 
3 must
decrease below 1 and 
2 increase above 0 by an equal amount.
Overall, the conditions rHL = rLL (
1 > 0; 
3 > 0) and qHL > qHH (
2 = 0) ; which were

found to hold for ��
��

< 1��
�+�(1��) (scenario (i) in Solution 1), also hold for

��
��

< �1; with

�1 >
1��

�+�(1��) : Moreover, the conditions qHL = qHH (
1 > 0; 
3 > 0) and rHL > rLL (
1 = 0) ;

which were found to hold for ��
��
> 1���

�
(scenario (iii) in Solution 1), also holds for ��

��
> �1;

with �1 <
1���
�
:

One can prove that all incentive constraints in � are satis�ed following the same procedure
as for Solution 1, yet with �1 = �2 = 0 as in Solution 2.
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C.4 Proof of Solution 4
Start from Solution 3 and ��

��
< �1 so that rLL = rHL and qHL > qHH : From the proof of

Solution 3 we know that, as S 0 becomes less concave, for rLL = rHL to be kept, there must be a
decrease in 
3 and an equal increase in 
2 that leave 
3+ 
2 and, hence, the right-hand side of
(46) unchanged. This implies that qHL � qHH decreases. At the limit, if it is still qHL > qHH ;
then 
3 = 0 and 
2 = 1: However, the proof of Solution 5 below shows that 
2 = 1 only if S

0

is convex. Hence, for some degree of concavity of S 0; at the solution to �; rLL = rHL together
with qHL � qHH :
We now show that there exists a solution in which rLL = rHL together with qHL = qHH :

Start from the highest degree of concavity of S 0 for which qHL = qHH : Based on (46) ; we see
that, as S 0 becomes slightly less concave, for qHL = qHH to be kept, it must be the case that

2 + 
3 decreases (and 
1 increases) by some " > 0: On the other hand, based on (50) ; we see
that, for rLL = rHL to be kept, it must be the case that 
1+
3 decreases (and 
2 increases) by
some � > 0: Overall, it must be the case that 
1 increases by " and 
2 by �; and that 
2 + 
3
decreases by " and 
1 + 
3 by �: Denoting d3 the change in 
3; the following conditions must
hold:


2 + � + 
3 + d3 = 
2 + 
3 � "

1 + "+ 
3 + d3 = 
1 + 
3 � �:

Hence, it must be d3 = � ("+ �) : That is, 
3 must decrease by "+ �: All this requires that the
values of 
2 and 
3 in the initial situation and the values of " and � be such that 
2 + � < 1
together with 
3 > " + �: This is feasible for a very small decrease in the degree of concavity
of S 0: Then, at the solution to �; qHL = qHH together with rLL = rHL:
The proof for the case of ��

��
> �1 proceeds similarly to the one developed above.

One can prove that all incentive constraints in � are satis�ed following the same procedure
as for Solution 1, yet with �1 = �2 = 0 as in Solution 2.

D Case 2

D.1 Proof of Solution 5
Starting from the proof of Solution 4, as the degree of concavity of S 0 becomes little enough,

at least one of conditions rLL = rHL and qHL = qHH becomes unfeasible. Then, either qHL <
qHH or rLL < rHL or both. In any such situation, 
3 = 0 and we move to Case 2. Then, either

1 and 
2 are both positive or only one of them is. We hereafter show that, for S

0 almost linear,

1 < 1 and 
2 < 1: We �rst suppose that, at the solution, 
1 = 1 meaning that qHH > qHL
together with

��(qHH � qHL) > ��(rLL � rHL): (57)

From (46) ; with 
1 = 1; qHH > qHL if and only if S 0 is strictly convex. Hence, 
1 = 1 only
if S 0 is strictly convex. Moreover, from (50) ; with 
1 = 1; rLL > rHL as long as S

0 is convex.
Then, (57) holds only for S 0 su¢ ciently convex. We next suppose that, at the solution, 
2 = 1
meaning that rLL > rHL together with

��(rLL � rHL) > ��(qHH � qHL): (58)

Then, from (50) ; rLL > rHL if and only if S 0 is strictly convex. Hence, 
2 = 1 only if S 0 is
strictly convex. From (46) ; with 
2 = 1; qHH > qHL as long as S

0 is convex. Then, (58) holds
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only for S 0 su¢ ciently convex. Hence, for S 0 almost linear, 
1 > 0 and 
2 > 0:

D.1.1 Check incentive constraints in �

(IC1) is binding and (IC3) is slack because � = 1 (as shown above). Hence, they are both
satis�ed. With (IC8) binding (
2 > 0) ; (IC2) is rewritten as rLH � rLL: From (52) and (56) ;
qLL > qLH and qLH > qLL so that (IC2) is slack. Further using the binding constraints (IC8) in
(IC4), the latter is rewritten as qLL � qHL: From 61, qLL > qHH ; also, from the proof of Lemma
8 below, q

LL
> q

HH
. Hence, qLL � qHH : As qHH > qHL (see above), (IC4) is slack. With (IC11)

binding (Lemma 3), (IC5) is rewritten as rHH � rHL: Recall that (14) is assumed to hold. It
follows from Lemma 5 that q

HH
> q

HL
and qHL > qHH so that (IC5) is slack. Using the binding

constraints (IC8) and (IC1) in (IC6), the latter becomes �� (qLH � qHL) � �� (rLL � rLH).
From (IC2), rLH > rLL. From the proof of Solution 1, qLH > qHL for S 0 not very concave.
Hence, (IC6) is slack. (IC7) and (IC8) are binding (
1 > 0 and 
2 > 0) and thus satis�ed.
Using binding (IC1) in (IC8) and then binding (IC8) in (IC9), the latter becomes rLL � rHL;
which is satis�ed (as from proof of Solution 1). Using binding (IC1) in (IC8), then binding
(IC8) in (IC10) and then binding (IC11) in (IC10), the latter is rewritten as �� (qLH � qHH) �
�� (rLL � rHL) : Then, from (55) ; q

LH
> q

HH
and qLH > qHH , so that qLH > qHH . Hence

(IC10) is satis�ed if �� (qHH � qHH) � �� (rLL � rHL), which holds with equality (
1 > 0 and

2 > 0). (IC11) is binding (as from Lemma 3). Using the binding constraints (IC11) and (IC1)
in (IC12), the latter is rewritten as �� (qLL � qHL) � �� (rLL � rHL). Using (27) ; (IC12) is
rewritten as qLL � qHH : In the proof of (IC4) here above, it was shown that this is strictly
satis�ed. Hence, (IC12) is slack.

D.2 Proof of Lemma 8
Take any given convexity of S 0; and �rst suppose that ��=�� is very close to 1: Then,

rewriting (15) as (16) and recalling that, under (14) ; qHL > qHH ; we see that (15) is satis�ed.
Suppose now that 
1 = 1. With��=�� close to 1; this involves that qHH�qHL > rLL�rHL:

Recalling that, for S 0 less convex, qHH � qHL = rLL � rHL ((27) satis�ed), and using (46) and
(50), the shift from Solution 5, at which 
1 < 1; to a solution at which 
1 = 1 (hence, 
2 = 0);
is possible only if q

HH
> q

LL
or, equivalently,

��

��
< (1� �) �+ 
2 (1� �)

(1� 
2�)�
: (59)

However, replacing 
2 = 0 into (59), this comes out to be violated. The hypothesis that 
1 = 1
leads to a contradiction. Next suppose that 
2 = 1; meaning that rLL � rHL > qHH � qHL:
With the right-hand side of (46) larger than that of (50) i.e.,

��

��
>

1

2

1� �
�

; (60)

and with (60) satis�ed for 
2 = 1 and 
1 = 0; one can move from Solution 5 to a solution at
which 
2 = 1 only if qLL > qHH : That is, (59) must be violated i.e., with 
2 = 0;

��
��
> 1��

(1��)� :

However, because 1��
(1��)� > 1 whereas ��=�� is very close to 1; the hypothesis that 
2 = 1 is

contradicted. All in all, when ��=�� is close to 1 and S 0 is strictly convex; 
1 < 1 and 
2 < 1
at the solution to �:
Suppose now that ��=�� raises. Then, based on (46) and (50) ; we see that, for (27) to

hold, it is necessary that 
1 increases and 
2 decreases.
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We hereafter show that (15) tightens as ��=�� raises. With (27) satis�ed, for (15) to hold
it is necessary and su¢ cient that rHH � rLL > 0: Using the quantity solution in Lemma 4, we
compute

S 0 (qHH)� S 0 (qLL) =
�
1 + 
1

�

1� �

�
�� +

�
1 + 
2

1� �
�

�
��; (61)

from which qLL > qHH : We prove below that qLL > qHH as well. We further compute

[S 0(q
HH
)� S 0(q

LL
)]� [S 0 (qHH)� S 0 (qLL)] (62)

= �2
�
1 +

(1� �) ��
(1� �) (1� �) + 
2

�
(1� �) �
1� � +

1� �
�

��
��;

which for � = 1 becomes

[S 0(q
HH
)� S 0(q

LL
)]� [S 0 (qHH)� S 0 (qLL)] = �2

�
1 + 
2

1� �
�

�
��: (63)

All else equal, the di¤erence rHH � rLL is smaller the smaller �� and/or 
2: Hence, as ��=��
raises and so 
2 becomes smaller (as previously found), (15) is tightened.
We are left with checking whether it is possible to have a solution at which 
1 = 1 in Case

2. Consider S 0 linear. With (27) satis�ed, rLL � rHL > qHH � qHL: From (46) and (50) ; this
is equivalent to (60) being violated. As S 0 becomes slightly convex, rLL � rHL increases by
some �r and qHH � qHL by some �q: (27) holds for a range of small degrees of convexity of
S 0: As the convexity increases within that range, the ratio �r=�q must remain constant and
equal to ��=��: Take (27) to hold (hence, the degree of convexity to belong to the range
aforementioned) and consider the ratio �r1=�q1 for some (slight) convexity of S 0; and the
ratio �r2=�q2 for some more important convexity of S 0:With qLL > qHH ; if 
1 and 
2 remain
unchanged, then (�r1=�q1) < (�r2=�q2) : Because it must be (�r1=�q1) = (�r2=�q2) ; it is
necessary that, when moving from less to more pronounced convexity, 
1 and 
2 change in a
way such that �r=�q takes a lower value than it would if 
1 and 
2 were unchanged. From
(46) and (50) ; 
1 must take a lower value and 
2 a higher value so that 
1 cannot jump to 1.

E Case 3

E.1 Proof of Solution 6
Start from the lowest degree of convexity of S 0 for which (15) is violated with � = 1: Then,

at the solution, �LL;1 = �LL;2: Equivalently,

(�� +��) (qHL � qHH) = (�� ���) (qHH � qHL): (64)

From the proof of Solution 5, (15) is violated for some values of 
1 and 
2 for which (27) is
satis�ed. Then, using (45) ; we see that, as S 0 becomes more convex, (64) is still satis�ed if �
lowers. As 
2 is to lower, in turn, for (27) to remain satis�ed as S

0 becomes more convex, 
2
and � decrease such that rHH = rLL; meaning that (64) and (27) are satis�ed. At the limit,
for some su¢ ciently high degree of convexity of S 0; � = 0 and we move to Solution 7.
Binding incentive constraints are the same as in Solution 5, except that (IC3) is here binding

as well. Hence, one can prove that all remaining incentive constraints are satis�ed in a similar
manner.
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E.2 Proof of Solution 7
Start from Solution 6 and suppose that S 0 is su¢ ciently convex, meaning that (64) is not

satis�ed for all � in (0; 1] : (IC3) is more stringent than (IC1) so that � = 0: Moreover, as (15)
is violated with strict inequality, qHH > qHL and so 
3 = 0: From the proof of Solution 6, recall
that, at the solution, � falls to zero when (64) is not satis�ed for all � > 0 for which (27) holds
instead. This means that, when � = 0; rLL > rHH ; which implies that 
2 = 1:

E.2.1 Check the incentive constraints in �

(IC1) is slack and (IC3) is binding (as � = 0); hence they are both satis�ed. As 
2 = 1
and so (IC8) is binding, (IC2) is rewritten as rLH � rLL and is satis�ed (recall (52) and (56)):
Further using (IC8) in (IC4), the latter is rewritten as qLL � qHL: From Lemma 4, for � = 0
and 
2 = 1 we compute

S 0(q
HL
)� S 0(q

LL
) = �� +

�

(1� �)���

S 0(qHL)� S 0(qLL) = �� � �

(1� �)���

Hence, q
LL
> q

HL
: If qLL > qHL; then (IC4) is slack. If qLL < qHL; then we computeh

S 0(q
HL
)� S 0(q

LL
)
i
� [S 0(qLL)� S 0(qHL)] = 2��

and we deduce that qLL > qHL as long as S 0 is convex, and so (IC4) is slack. As (IC11) is
binding (Lemma 3), (IC5) becomes rHH � rHL: Under (14) ; it follows from Lemma 5 that
q
HH

> q
HL
and qHL > qHH so that (IC5) is slack. Using (IC8) and (IC1) in (IC6), the latter is

satis�ed if and only if �� (qLH � qHL) � �� (rLL � rLH). This holds because rLH > rLL (from
(IC2)) and qLH > qHL (from the proof of Solution 1). (IC7) is slack (
1 = 0) ; (IC8) is binding
(
2 = 1) and (IC9) is slack (
3 = 0) : Using (IC3) in (IC8), and then (IC8) in (IC10), the latter
is written as �� (qLH � qHH) � �� (rLL � rHH) : This is equivalent to

(�� ���) (q
LH
�q

HH
)+(�� +��) (qLH�qHH)+��(qLL�qLH)+��(qLH�qLL) � 0: (65)

Recall that, under (52) and (56) ; qLL > qLH and qLH > qLL: Furthermore, under Lemma 4,
for � = 0 and 
2 = 1 we compute

S 0(q
HH
)� S 0(q

LH
) = �� +

�

(1� �) (1� �) (�� ���)

S 0(qHH)� S 0(qLH) = �� +
�

(1� �) (1� �) (�� +��) ;

so that q
LH

> q
HH

and qLH > qHH : It follows that the left-hand side of (IC10) is positive
and so (IC10) is slack. (IC11) is binding (from Lemma 3). Using (IC3) in (IC12), the latter
is rewritten as �� (qLL � qHH) � �� (rLL � rHH) : Using (IC10), for (IC12) to hold it su¢ ces
that qLH � qLL. Recalling from (56) and (52) that

S 0(q
LL
)� S 0(q

LH
) = S 0(qLH)� S 0 (qLL) ;

it follows that qLH � qLL for S 0 convex. Hence, (IC12) is satis�ed.
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F Case 4
Recall from Lemma (5) that, when (14) is violated, q

HH
= q

HL
and qHL = qHH . The rents

in Lemma 3 are rewritten as

�HL = 0; �HH = ��rHH ; �LL = ��qHH (66)
�LH = 
1 (��qHH +��rHH) + 
2 (��qHH +��rLL) :

The agent�s expected rent is then

���qHH + (1� �) f[1� (1� 
1) �] rHH + �
2rLLg��: (67)

Denote �" the reduced problem, similar to �0; in which the expected rent is yet given by (67) :
Then, at optimum, the quantities assigned to type LH and type LL are still pinned down as
in Lemma 4. Instead, the quantities assigned to type HH and HL are characterized as

S 0(q
HH
) = �H � �H +

�

(1� �) (1� �)�� +
1� (1� 
1) �

1� � ��

S 0 (qHH) = �H + �H +
�

(1� �) (1� �)�� �
1� (1� 
1) �

1� � ��;

together with q
HH

= q
HL

and with qHL = qHH : In what follows, we analyze separately the
three possible situations, namely (1) 
1 = 1 (rHH > rLL in (66)); (2) 
1 > 0 and 
2 > 0
(rHH = rLL) ; and (3) 
2 = 1 (rLL > rHH) ; identifying the conditions under which they arise
and checking that the solutions satisfy the incentive constraints in �:

F.1 The case of 
1 = 1 (Solution 8)
We check �rst under which condition 
1 = 1: From (66) ; this means that rHH > rLL: We

have

S 0(q
HH
)� S 0(q

LL
) =

1� � (1� �)
(1� �) (1� �)�� +

�

1� ���

so that q
LL
> q

HH
: Moreover,

S 0 (qHH)� S 0 (qLL) =
1� � (1� �)
(1� �) (1� �)�� �

�

1� ���;

which is positive and so qLL > qHH :Computingh
S 0(q

HH
)� S 0(q

LL
)
i
� [S 0 (qHH)� S 0 (qLL)] = 2

�

1� ��� (68)

we deduce that rHH > rLL if and only if S 0 is su¢ ciently concave.
(IC1) and (IC3) are binding. We bind (IC11) and (IC7); we use the former in the latter,

and then (IC7) in (IC2). Then, (IC2) is rewritten as rLH � rHH : We compute

S 0(q
HH
)� S 0(q

LH
) =

1� � (1� �)
(1� �) (1� �)�� +

1

1� ���
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so that q
LH
> q

HH
: Moreover,

S 0 (qHH)� S 0 (qLH) =
1� � (1� �)
(1� �) (1� �)�� �

1

1� ���

so that qLH > qHH if and only if
��
��
> 1��

1��+�� ; which is actually the case. We further compute

[S 0(q
HH
)� S 0(q

LH
)]� [S 0 (qHH)� S 0 (qLH)] =

2

1� ���; (69)

which shows that, at the solution to �00; rLH � rHH (i.e., (IC2) holds) if and only if S 0 is
not very concave. Using (IC1) in (IC4), together with the fact that quantities of types HH
and HL are pooled, (IC4) is rewritten as qLL � qHH and it is slack provided qLL > qHH and
qLL > qHH (as found above). Using (IC11) in (IC5), the latter is rewritten as rHH � rHL and
it is satis�ed with equality as the quantities of types HH and HL are pooled. Using (IC11) in
(IC7), and then (IC7) in (IC6), the latter is rewritten as ��qLH +��rLH � ��qHH +��rHH ;
and it is implied by (IC2) and (IC10) (as written here below). (IC7) is binding (
1 = 1) ; (IC8)
is slack (
2 = 0) : (IC9) collapses onto (IC7) as the quantities of types HH and HL are pooled.
Using (IC7) in (IC10), the latter is rewritten as qLH � qHH : We found that qLH > qHH and
qLH > qHH ; hence (IC10) is slack. (IC11) was taken to be binding. (IC12) is rewritten as
��qLL+��rHH � ��qHH +��rLL: This is implied by (IC4) together with rHH > rLL; which
was taken to hold.

F.1.1 When the solution to �00 violates incentive constraints in �

The sole conditions that might not hold jointly in �00 are rHH > rLL and rLH � rHH ((IC2)).
As proved above, rHH > rLL holds but the condition rLH � rHH does not when S 0 is very
concave. In this case, the solution to � is such that (IC2) is binding, or, equivalently, rLH =
rHH : Moreover, by comparing (68) with (69) ; we notice that there exist some intermediate
degrees of concavity of S 0 for which both rHH > rLL and rLH > rHH : The new reduced
programme is then that in which P faces the same maximization problem as above, but subject
to the constraint rLH = rHH : Production levels are pinned down as in Lemma 4 for type LL:
For typesHH; HL and LH; they are characterized by attaching the Lagrange multiplier �3 > 0
to the new constraint rLH = rHH :

F.2 The case of 
2 = 1 (Solution 10)
We check �rst under which condition 
2 = 1: From (66) ; this means that rLL > rHH : We

have

S 0 (qHH)� S 0 (qLL) =
1� � (1� �)
(1� �) (1� �)�� +

1� �
�

��

and see that qLL > qHH : We further compute

S 0(q
HH
)� S 0(q

LL
) =

1� � (1� �)
(1� �) (1� �)�� �

1� �
�

��

so that q
LL
> q

HH
if and only if

��

��
� (1� �) (1� �)2

� [1� � (1� �)] : (70)
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This is veri�ed if the right-hand side of (70) is smaller than the right-hand side of (14) evaluated
at � = 0 and 
2 = 1 i.e.,

1� �
1
1�� � �

<
1

�
+

�

1� �:

This inequality is satis�ed because the left-hand side is smaller than 1; whereas the right-hand
side is larger than 1: Hence, q

LL
> q

HH
. Using the calculations above, we further compute

[S 0 (qHH)� S 0 (qLL)]�
h
S 0(q

HH
)� S 0(q

LL
)
i
= 2

1� �
�

��

from which we deduce that rLL > rHH if and only if S 0 is su¢ ciently convex.
(IC1) and (IC3) are both binding. Using the binding constraint (IC8) in (IC2), the latter

is rewritten as rLH � rLL: We compute

S 0(q
LL
)� S 0(q

LH
) = S 0 (qLH)� S 0 (qLL) =

��

�

and see that q
LH

> q
LL
and qLL > qLH so that (IC2) is satis�ed. Using (IC1) in (IC4) and

provided the quantities of types HH and HL are pooled, (IC4) is rewritten as qLL � qHH and
it is slack as we found that qLL > qHH and qLL > qHH : Using the binding constraint (IC11)
in (IC5), the latter is rewritten as rHH � rHL; which is satis�ed as an equality, provided the
quantities of types HH and HL are pooled in Case 4. Using (IC1) in (IC8), and then (IC8) in
(IC6), the latter is rewritten as �� (qLH � qHH) � �� (rLL � rLH). This is satis�ed because
rLH � rLL (from (IC2)) and qLH � qHH : To see that the latter inequality is satis�ed, observe
that it is necessary for (IC10) to hold (with rLL > rHH ; by assumption), which is shown to
occur below. (IC7) is slack (
1 = 0) and (IC8) binding (
2 = 1) : (IC9) is equivalent to (IC7)
as the quantities of types HH and HL are pooled. Using (IC3) in (IC8), and then (IC8)
in (IC10), the latter is rewritten as �� (qLH � qHH) � �� (rLL � rHH) : This is equivalent to
(65) and observing that, as before, its left-hand side is positive, it comes out that (IC10) is
satis�ed when rLL > rHH : Lastly, (IC12) is rewritten as �� (qLL � qHH) � �� (rLL � rHH) or,
equivalently,

(�� +��) (qLL � qHH) � (�� ���) (qHH � qLL):

As qLL > qHH and qLL > qHH ; this condition holds as well.

F.3 The case of 
1 > 0 and 
2 > 0 (Solution 9)
We found that rHH > rLL if and only if S 0 is su¢ ciently concave, whereas rLL > rHH if and

only if S 0 is su¢ ciently convex. Therefore, when S 0 is almost linear, it must be the case that
rLL = rHH , meaning that both 
1 > 0 and 
2 > 0. The incentive constraints in � are veri�ed
following the same procedure as above.

G Ex-post participation constraints
Suppose that (pcHL) is binding and that (pcij) is slack for all ij 6= HL: Then, �HL = �LqHL

at optimum. All other rents are the same as in � plus the additional term �LqHL: Following
the same reasoning as for �; if qHL > qHH and q

HH
> q

HL
at optimum, and if all upward
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incentive constraints are slack, quantities are characterized as in Lemma 4, except that:

S 0(qHL) = �H + 2�L +
�

1� �

��
� + (
2� + 
3)

1� �
�

�
��

�
�
1� � + (1� �
2�)

1� �
��

�
��

�
:

In this setting, (45) becomes

[S 0(q
HL
)� S 0(q

HH
)]� [S 0 (qHH)� S 0 (qHL)] = 2

�
�
2 + 
3 �

(1� �)�
1� �

�
�

(1� �)��� + �L:

If � = 1; then qHH > qHL if and only if S 0 is not su¢ ciently concave. That is, (15) holds for
S 0 su¢ ciently concave and for S 0 almost linear, not otherwise. Hence, in the particular case in
which S 0 is almost linear, � = 1 and so �LL;1 > �LL;2: In turn, (50) becomes

[S 0(q
HL
)� S 0(q

LL
)]� [S 0 (qHL)� S 0 (qLL)] = 2

(
1 + 
3) (1� �)
(1� �)� �� � �L: (71)

In �; the right-hand side of (50) is positive. Here, the right-hand side of (71) is positive if and
only if

�L < 2
(
1 + 
3) (1� �)

(1� �)� ��: (72)

Take (72) to hold. Then, as in �; rLL > rHL if and only if S 0 is not su¢ ciently concave. Overall,
for S 0 almost linear and 
2+
3 > 0; qHH > qHL and rLL > rHL; meaning that 
3 = 0: Suppose

2 = 1: Then, qHH > qHL and rLL < rHL; which yields a contradiction. Hence, two cases are
feasible i.e., 
1 > 0 together with 
2 > 0; and 
1 = 1: For ��=�� su¢ ciently small, the former
case arises.
Let us check the conditions that we took to hold. We took q

HH
> q

HL
; which occurs indeed

when � = 1: Then, qHL > qHH if and only if

��

��
<

1

1� 
1

�
1

�
� (1� �)

�

2 +

�

1� �

�
� � (1� �)

�

�L
��

�
:

Condition (72) becomes

�L < 2

1 (1� �)
(1� �)� ��: (73)

Furthermore, q
HH

> qHH if and only if

�L >
2

3

�
1 + 
1

�

1� �

�
1� �
�

��: (74)

For (73) and (74) to hold together, it is necessary that

�L 2
�
2

3

�
1 + 
1

�

1� �

�
1� �
�

��; 2

1 (1� �)
(1� �)� ��

�
;

which further requires that 
1 be large enough i.e., 
1 � (1� �) = (3� �) :
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Lastly, for (pcij) to be slack for all ij 6= HL; it must be the case that, at the solution:

�LqHL +��rHL � �HqHH (75)
�LqHL +��qHL � �LqLL (76)
��qHH +��rHL � �HqLH : (77)

G.1 An application to the award of for monopoly franchises
P runs an auction to award the contract for production of the good. The auction is com-

petitive. For simplicity, there are two participants, denoted 1 and 2: Each observes privately
his own type ikjk 2 �; k 2 f1; 2g : De�ne Qi�kj�ki0kj

0
k

the probability that participant k wins the
auction with the announcement i0kj

0
k; if the other participant has type i�kj�k: 
3 = 0 if and

only if

Ei�kj�k

�
Q
i�kj�k
LH �LH;4

�
> Ei�kj�k

�
Q
i�kj�k
LH �LH;1

�
Ei�kj�k

�
Q
i�kj�k
LH �LH;4

�
> Ei�kj�k

�
Q
i�kj�k
LH �LH;2

�
;

where �ij have the same formulas as in problem �ep. These inequalities are, same as before,
equivalent to

�LH;4 > �LH;1; �LH;4 > �LH;2

We thus need to check the same conditions as in � and �ep. In particular, to have 
3 = 0; it is
necessary that either qHH � qHL > 0 or rLL � rHL > 0; or both.
Letting Qij denote the probability that at least one participant has type ij and wins the

auction, the expected return of P is given by

X
ij2�

1

2
Qij

�
S(q

ij
)� (�i � �j) qij + S(qij)� (�i + �j) qij

�
�QLL [��LL;1 + (1� �)�LL;2]

�QHH�HH �QLH f
1�LH;1 + 
2 [��LH;2 + (1� �)�LH;3] + 
3�LH;4g � �LqHL;

where

QLL = �� [��+ 2 (1� �)]
QHH = (1� �)2

�
1� �2

�
QLH = � (1� �) [2� � (1� �)]
QHL = (1� �)2 �2:

Type LH is assigned the FB quantities. The optimal LL-quantities are such that

S 0(q
LL
) = �L � �L + 
2

(1� �) [2� � (1� �)]
� [2 (1� �) + ��] ��

S 0(qLL) = �L + �L � 
2
(1� �) [2� � (1� �)]
� [2 (1� �) + ��] ��:
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The optimal HH-quantities are such that

S 0(q
HH
) = �H � �H +

� f[(1� �)�+ [
1 + (1� �) 
2] (1� �)] [2� � (1� �)]� (1� �) ��g
(1� �)2 (1� �2)

��

�(1� �) � f[�+ 
2 (1� �)] [2� � (1� �)]� ��g
(1� �)2 (1� �2)

��

S 0(qHH) = �H + �H +
� f[(1� �)�+ [
1 + (1� �) 
2] (1� �)] [2� � (1� �)]� (1� �) ��g

(1� �)2 (1� �2)
��

+
(1� �) � f[�+ 
2 (1� �)] [2� � (1� �)]� ��g

(1� �)2 (1� �2)
��:

The optimal HL-quantities are such that

S 0(q
HL
) = �H � �L +

� f[��+ (1� �) (
2� + 
3)] [2� � (1� �)]� ���g
(1� �)2 �2

��

+
�

(1� �)2 �2
f[1� �
2 (1� �)� ��] [2� � (1� �)]

+
(1� �)2 (1� �2)

�
� (1� �) ��

)
��

S 0(qHL) = �H + �L +
� f[��+ (
2� + 
3) (1� �)] [2� � (1� �)]� ���g

(1� �)2 �2
��

� �

(1� �)2 �2
f[1� �
2 (1� �)� ��] [2� � (1� �)]

+
(1� �)2 (1� �2)

�
� (1� �) ��

)
�� + �L

Suppose that S 0 is almost linear and that ��=�� is small at the solution i.e., the optimal
quantities characterized above are such that qHL > qHH (the counterpart for (14)):We hereafter
check under which conditions the solution is such that � = 1; 
3 = 0; 
1 > 0; and 
2 > 0; as
we found in � and �ep. We compute

[S 0(q
HL
)� S 0(q

HH
)]� [S 0 (qHH)� S 0 (qHL)] (78)

= 2�
[(
2� + 
3) (1� �) + (� � �)�] [2� � (1� �)]� (� � �2) ��

(1� �)2 �2 (1� �2)
�� + �L:

When � = 1; the right-hand side of (78) is

2�
(
2 + 
3 + �) [2� � (1� �)]� �� (1 + �)

(1� �)2 �2 (1 + �)
�� + �L > 0:

Hence, qHH > qHL if and only if S 0 is almost linear or convex, which con�rms that 
3 = 0:
Moreover, we know from the proof of Solution 5 and Lemma 8 that with 
3 = 0; 
1 > 0 and

2 > 0; � = 1 if and only if rHH > rLL: Here, (63) becomes

[S 0(q
HH
)� S 0(q

LL
)]� [S 0 (qHH)� S 0 (qLL)] = �2

�
1 + 
2

(1� �) [2� � (1� �)]
� [2 (1� �) + ��]

�
��;
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con�rming that rHH > rLL if and only if S 0 is not su¢ ciently convex. Hence, � = 1 for S 0

almost linear. Replacing � = 1 in (78) yields

[S 0(q
HL
)�S 0(q

HH
)]�[S 0 (qHH)� S 0 (qHL)] =

2�

(1� �)2 �2

�

2
2� � (1� �)

1 + �
+ 2�

1� �
1 + �

�
��+�L:

Moreover, � = 1 and 
3 = 0 we compute

[S 0(q
HL
)� S 0(q

LL
)]� [S 0 (qHL)� S 0 (qLL)]

=
2 (1� �)
�2

"

1
� [2� � (1� �)]

(1� �)2
+ �2

(1 + �) (1� �)2

�

#
�� � �L

When 
1 > 0 and 
2 > 0; as 
1 + 
2 = 1; raising either the di¤erence qHH � qHL or the
di¤erence rLL � rHL involves reducing the other. However, unlike in the proof of Solution 5,
it is possible to have qHH > qHL together with rLL > rHL when either 
1 = 1 or 
2 = 1:
Therefore, a solution can arise, at which either 
1 > 0 and 
2 > 0 (as before), but also 
1 = 1
or 
2 = 1.

H Examples
In all numerical examples, we used the surplus function

S(q) = aq � q1+b

1 + b
;

with a > 0; b > 0; such that S(q) > 0 for all the quantities that we found to solve �; and
S 0(q) = a�qb > 0: Then, S 00(q) = �bqb�1 < 0; and S 000(q) = �b (b� 1) qb�2 is positive for b < 1
and negative for b > 1: The quantities pinned down in Lemma 4 are computed as follows. For
type HL :

q
HL

=

�
a�

�
�H � �L + �

�+ 
2 (1� �)
� (1� �) �� + (1� �) 1� (1� 
1) �

� (1� �) ��

�� 1
b

qHL =

�
a�

�
�H + �L + �

�+ 
2 (1� �)
� (1� �) �� � (1� �) 1� (1� 
1) �

� (1� �) ��

�� 1
b

:

For type HH :

q
HH

=

�
a�

�
�H � �H + 
1

�

1� ���
�� 1

b

qHH =

�
a�

�
�H + �H + 
1

�

1� ���
�� 1

b

:
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For type LL :

q
LL

=

�
a�

�
�L � �L + 
2

1� �
�

��

�� 1
b

qLL =

�
a�

�
�L + �L � 
2

1� �
�

��

�� 1
b

:

For type LH :

q
LH

= [a� (�L � �H)]
1
b

qLH = [a� (�L + �H)]
1
b :

H.1 Example 1
In the table hereafter, we report the values that the optimal quantities take for b = 1 and

b = 0:4; at which 
1 and 
2 are such that (27) holds and 
1 = 1� 
2 :

b q
HL

qHL q
HH

qHH q
LL

qLL q
LH

qLH

1 11:45 7:35 12:95 6:35 11:45 8:12 14:3 7:7

0:5 133:05 56:3 166:25 39:61 195 65 205 59:29

H.2 Example 2
In the table hereafter, we report the values that the optimal quantities take, together with

the necessary condition (14) :

�H q
HL

qHL q
HH

qHH q
LL

qLL q
LH

qLH Condition (14)

3:9 90:6 73:35 187:65 34:8 166 83 222 50:41 1:11 < 5

3:6 109:02 64:82 177:17 37:34 183:47 71:49 213:16 54:76 1:66 < 8:63

3:3 133:05 56:3 166:25 39:61 195 65 205 59:29 3:33 < 57:63

H.3 Example 3
With (pcHL) binding, the HL-quantity in the bad state is pinned down as follows:

qHL = a�
�
�H + 2�L + �

�+ 
2 (1� �)
� (1� �) �� � (1� �) 1� (1� 
1) �

� (1� �) ��

�
:

All other quantitites are characterized as above for b = 1: At the solution, 
1 = 0:9 and

2 = 0:1: The conditions that need to be satis�ed are as follows:

(36) : 1:5 < 13:4; (15) : 4:2 < 5:98; (73) : 3 < 8:25

(75) : 22:62 > 21; (76) : 31:67 > 24:93; (77) : 33:82 > 27:36
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