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Abstract. An agent is said to be partially honest if he or she weakly prefers
an outcome at a strategy profile with his truthful strategy than an outcome at
a strategy profile with his false strategy, then this player must prefer strictly the
“true” strategy profile to the “false” strategy profile. In this paper we consider an
exchange economy with single peaked preferences. With many agents (n ≥ 3), if
there exists at least one partially honest agent, we prove that any solution of the
problem of fair division satisfying unanimity is Nash implementable.
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1 Introduction

Given some desired outcomes, whether there exists game form for which the
strategic interactions require agents to choose actions that give the desired
outcomes. This is the aim of the implemenation theory. In standard framework
of Nash implementation, Maskin (1977, 1999) was the first who shows that any
social choice correspondence (SCC) satisfying Maskin monotonicity and no veto
power condition can be implemented in Nash equilibria. The Maskin monotonicity
condition is a necessary condition for implementation, but the no veto power
condition is not. For a full characterization, Maskin’s Theorm was extended by
Moore and Repullo (1990), Dutta and Sen (1991), Sjöström (1991) and Danilov
(1992) 1 . Recently, Matsushima (2008) and Dutta and Sen (2010) introduce,

∗Corresponding author. Tel.:+33 6 20 36 51 93. E-mail addresses: doghmi@insea.ac.ma,
ahmed.doghmi@unicaen.fr (A.Doghmi), abderrahmane.ziad@unicaen.fr (A. Ziad)

1The Maskin’s results are also extended by several authors not cited here.
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in two different frameworks, the notion of honesty as an element of behavioral
economic perspectives. Matsushima (2008) considers a social choice function
(SCF) which assigns to each possible vNM preference profile a lottery over the basic
set of outcomes. He assumes that all players have intrinsic preference for honesty
oriented in lexicographical way on a complete information environment with small
fines. He shows that when there exists at least three players in the mechanism, any
SCF is implementable in the iterative elimination of strictly dominated strategies,
and in Nash equilibria. Dutta and Sen (2010) consider Nash implementation
problems with the assumption that there is at least one partially honest agent
who not only has the standard self-interested preference on alternatives but also
has an intrinsic preference for honesty. They assume that a player is partially
honest if she prefers weakly an outcome of a strategy profile with his truthful
strategy than an outcome of a strategy profile with his false strategy, then this
player must prefer strictly the “true” strategy profile than the “false” strategy
profile. The identity of this player is not known by the planner. In this setting,
they show that when there exist at least three players, any SCC satisfying no veto
power can be implemented in Nash equilibria. In a domain of strict orders, they
also provide necessary and sufficient conditions for implementation in the two-
player case when there is exactly one partially honest individual and when both
individuals are partially honest. These latter results were extended by Lombardi
(2010) to the domain of weak orders.

We consider an exchange economy with single peaked preferences. If there
exists at least one partially honest agent, we prove that all solutions of the problem
of fair division satisfying unanimity are Nash implementable.

2 Notations and definitions

Let A be the set of alternatives, and let N = {1, ..., n} be the set of individuals,
with generic element i. Each individual i is characterized by a preference relation
Ri defined over A, which is a complete, transitive, and reflexive relation in some
class <i of admissible preference relations. Let < = <1× ...×<n. Let D ⊂ < be a
domain. An element R = (R1, ..., Rn) ∈ D is a preference profile. The relation Ri

indicates the individual i’s preference. For a, b ∈ A, the notation aRib means that
the individual i prefers weakly a to b. The asymmetrical and symmetrical parts of
Ri are denoted respectively by Pi and ∼i.
A social choice correspondence (SCC) F is a function from < into 2A \ Ø, that
associates with every R a nonempty subset of A. For all Ri ∈ <i and all a ∈ A, the
lower contour set for agent i at alternative a is noted by: L(a,Ri) = {b ∈ A | aRib}.
The strict lower contour set is denoted by LS(a,Ri) = {b ∈ A | aPib}.

Now, we model an environment for partial honesty. As Dutta and Sen (2009),
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we assume that an honest player’s preference for honesty is lexicographic. Let
Si = < × Ci be the set of strategy profiles for a player i , where Ci denotes the
other components of the strategy space ( which depends on individual preferences,
social states,...). Let S = S1×...×Sn be a set of strategy profiles. The elements of S
are denoted by s = (s1, ..., sn). For each i ∈ N , and R ∈ D , let τi(R) = {R} × Ci

be the set of truthful messages of agent i. We denote by si ∈ τi(R) a truthful
strategy as player i is reporting the true preference profile. We extend a player’s
ordering over A to an ordering over strategy space S. This is because, the players’
preference between being honest and dishonest depends on strategies that the
others played and of the outcomes which they obtain. Let �R

i be the preference of
player i over S in preference profile R. The asymmetrical and symmetrical parts
of Ri are denoted respectively by �R

i and ∼R
i . Let Γ be a mechanism ( game form)

represented by the pair (S, g), where g : S → A is a payoff function.

Definition 1 A player i is partially honest if for all preference profile R ∈ D and
(si, s−i), (s

′
i, s−i) ∈ S,

(i) when g(si, s−i)Rig(s′i, s−i) and si ∈ τi(R), s′i /∈ τi(R), then (si, s−i) �R
i

(s′i, s−i).
(ii) In all other cases, (si, s−i) �R

i (s′i, s−i) iff g(si, s−i)Rig(s′i, s−i).

A Nash equilibrium of the game (Γ,�R) is a vector of strategies s ∈ S such
that for any i, g(s)Rig(bi, s−i) for all bi ∈ Si, i.e. when the other players choose
s−i, the player i cannot be better off by deviating from si. Given N(g,�R, S) the
set of Nash equilibria of the game (Γ,�R), a mechanism Γ = (S, g) implements
a SCC F in Nash equilibria if for all R ∈ D , F (R) = g(N(g,�R, S)). We say
that a SCC F is implementable in Nash equilibria if there is a mechanism which
implements it in these equilibria.

Assumption (A): There exists at least one partially honest individual and
this fact is known to the planner. However, the identity of this individual is not
known to her.

Definition 2 (Unanimity). An SCC F satisfies unanimity if for any a ∈ A, any
R ∈ <, and for any i ∈ N , L(a,Ri) = A implies a ∈ F (R).
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3 Exchange economy with single-peaked preferences

There is an amount Ω ∈ R++ of certain infinitely divisible good that is to be
allocated among a set N = {1, ..., n} of n agents. The preference of each agent
i ∈ N is represented by a continuous and single-peaked preference relation Ri over
[0,Ω] (the asymmetrical part is written Pi and the symmetrical part ∼i). For all
xi, yi ∈ [0,Ω], xiRiyi mean that, for the agent i, to consume a share xi is as good
as to consume the quantity yi. A feasible allocation for the economy (R,Ω) is a
vector x ≡ (xi)i∈N ∈ Rn

+ such that
∑

i∈N xi = Ω and X is the set of the feasible
allocations. We note that the feasible allocations set is X = [0,Ω] × ... × [0,Ω].
Thus, L(x,Ri) = X is equivalent to L(xi, Ri) = [0,Ω]. For the set L(x,Ri) = X,
xRiy for all y ∈ X implies that xiRiyi. We note that the free disposability of the
good is not assumed. A preference relation Ri is single peaked if there is a number
p(Ri) ∈ [0,Ω] such that for all xi ∈ [0,Ω] if yi < xi ≤ p(Ri) or p(Ri) ≤ xi < yi,
then xiPiyi. We call p(Ri) the peak of Ri.

The class of all single-peaked preference relations is represented by Dsp ⊆ D .
For R ∈ Dsp, let p(R) = (p(R1), ..., p(Rn)) be the profile of peaks (or of preferred
consumptions). A single peaked preference relation Ri ∈ Dspi is described by the
function ri : [0,Ω] → [0,Ω] which is defined as follows: ri(xi) is the consumption
of the agent i on the other side of the peak which is indifferent to xi (if it exists),
else, it is 0 or Ω. Formally, if xi ≤ p(Ri), then, ri(xi) ≥ p(Ri) and xi ∼i ri(xi) if
such a number exists or ri(xi) = Ω otherwise; if xi ≥ p(Ri), then, ri(xi) ≤ p(Ri)
and xi ∼i ri(xi) if such a number exists or ri(xi) = 0 otherwise. Let us introduce
some known correspondences.

Pareto solution (Pro): P (R) = {x ∈ X : @x′ ∈ X such that for all i ∈ N ,
x′iRixi, and for some i ∈ N , x′iPixi}.

The Pareto correspondence is the solution which associates each economy with
its feasible allocation set such that there does not exist any other feasible allocation
that all agents prefer weakly and at least one prefers strictly.

The No-Envy correspondence (NE): NE(R) = {x ∈ X if xiRixj for all
i, j ∈ N}.

The no-envy correspondence selects the allocations at which no agent prefers
some others consumption to his own. Formally:

Individually Rational Correspondence from Equal Division (Ied):Ied(R) =
{x ∈ X : xiRi(Ω/n) for all i ∈ N}.
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Proportional correspondence (Pro): Let R ∈ Dsp, x ∈ Pro(R) if x ∈ X
and (i) when

∑
i∈N p(Ri) ≥ 0, and ∃λ ∈ R+ s.t. ∀i ∈ N , xi = λp(Ri); and (ii)

when
∑

i∈N p(Ri) = 0, x = (Ω/n, ...,Ω/n).

This solution selects the allocation for which each agent obtain a share
proportionally to its preferred consumption if at least one preferred consumption
is positive, and an average share if all preferred consumptions equal zero.

Symmetrically Proportional correspondence (SPro): Let R ∈ Dsp,
x ∈ SPro(R) if x ∈ X and (i) when

∑
i∈N p(Ri) ≥ Ω, and ∃λ ∈ R+ s.t. ∀i ∈ N ,

xi = λp(Ri); and (ii) when
∑

i∈N p(Ri) ≤ Ω, ∃λ ∈ R+ s.t. Ω− xi = λ(Ω− p(Ri))
for all i ∈ N .

This solution is quite simply a symmetricized version of the proportional
solution where the units of the good are treated symmetrically above the preferred
consumptions if the sum of latter is less than the amount Ω, or below it (the
preferred consumptions) if its sum is greater than Ω.

Equal-Distance correspondence (Dis): Let R ∈ Dsp, x ∈ Dis(R) if x ∈ X
and (i) when

∑
i∈N p(Ri) ≥ Ω, ∃d ≥ 0 s.t. ∀i ∈ N , xi = max{0, p(Ri) − d}; and

(ii) when
∑

i∈N p(Ri) ≤ Ω, ∃d ≥ 0 s.t. xi = p(Ri) + d for all i ∈ N .

This solution is based on comparing distances from preferred consumptions. It
selects the allocation at which all agents are equally distant from their preferred
consumptions if the sum of these latter is less than the amount Ω, otherwise, each
agent obtain the maximum of zero and a share given by his preferred consumptions
minus a distance.

Equal-Sacrifice correspondence (Sac): Let R ∈ Dsp, x ∈ Sac(R) if x ∈ X
and (i) when

∑
i∈N p(Ri) ≥ Ω, ∃σ ≥ 0 s.t. ∀i ∈ N , ri(xi)−xi ≤ σ, strict inequality

holds only if xi = 0; and (ii) when
∑

i∈N p(Ri) ≤ Ω, ∃σ ≥ 0 s.t. xi − ri(xi) = σ
for all i ∈ N .

This solution is based on the idea of the measurement of “the sacrifice” at
allocation x by the size of agent i’s upper contour set at xi. It selects efficient
allocations at which sacrifices are equal across agents when the sum of preferred
consumptions is less than the amount Ω, otherwise the agents which would have
negative consumptions, get zero.

In a standard domain of exchange economy with single-peaked preferences,
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Thomson (1990, 2010) examined the implementation problem of many solutions
of the problem of fair division. For monotonic correspondences, he utilised different
techniques developed in the literature. By checking Maskin’s conditions, he found
that only Pareto correspondence (P ) satisfies no veto power condition and hence
it is implementable by Maskin’s Theorem (19977, 1999). The family (monotonic
solutions) of No-Envy correspondence (NE), Individually rational correspondence
from equal division (Ied), (NE ∩ Ied) correspondence, (NE ∩ P ) correspondence
and (NE ∩ Ied) correspondence fail to satisfy no veto power condition. Therefore
Maskin’s theorem can not give an information on their implementability. For
this, Thomson exploited a strong version of Maskin monotonicity, called strong
monotonicity, proposed by Daniliv (1992) and generalized by Yamato (1992).
He showed that this condition is satisfied by (P ), (NE), (Ied) and (NE ∩ Ied)
correspondences. Thus, he succeed to implement latter solutions by Yamato’s
theorem (1992). However, he proved that strong monotonicity does not hold for
(NE ∩ P ) correspondence and (NE ∩ Ied) correspondence. He concluded that
strong monotonicity is not stable under intersection. To implement these latter
correspondences, Thomson imposed difficult conditions.

Doghmi and Ziad (2008b) used new sufficient conditions of strict monotonicity,
(strict weak) no veto power and unanimity developed in Doghmi and Ziad (2008a).
They showed that these conditions are satisfied by the different solutions cited
above. Moreover, they illustrated that these conditions are very simple and stable
under intersection. This tool of stability is very useful to detect directly the
implementabilty of the correspondences produced by intersection. The simplicity
of these conditions appears in the fact that, in this domain under consideration,
Unanimity is verified by all solutions, strict weak no veto power is satisfied
independently to studied solution, and strict monotonicity becomes equivalent
to Maskin monotonicity. Doghmi and Ziad (2008b) gave a full characterization
in this domain by showing that just Maskin monotonicity alone is necessary and
sufficient for implementation. Thus, by this very easy condition compared to the
different techniques used by Thomson (1990, 2010), they solved definitively the
problem of implementation in a domain of exchange economies with single peaked
preferences. With the honesty assumption, the following is the main result of the
paper.

Theorem 1 . Let n ≥ 3 and suppose Assumption (A) holds. Any SCC satisfying
unanimity is implementable in Nash equilibria. In particulary (Pro), (NE), (Ied),
(SPro), (Dis), (Sac) or any intersection of them are implementable in Nash
equilibria.

Proof. By Unanimity and Lemma 1 of Doghmi and Ziad (2008b), the strict
weak no veto power condition is satisfied independently of any studied solution.
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By proposition 1 in the appendix, we compete the proof. Q.E.D.

4 Appendix

In this section, we present the sufficient conditions that characterize the family
of social choice correspondences that can be implemented with partially honest
agents.

We introduce the following weak version of no veto power condition.

Definition 3 (Strict weak no veto power). An SCC F satisfies strict weak no veto
power if for i, R ∈ <, and a ∈ F (R), for R′ ∈ <, b ∈ LS(a,Ri) ⊆ L(b, R′i) and
L(b, R′j) = A for all j ∈ N\{i}, then b ∈ F (R′).

We have the following proposition.

Proposition 1 . Let n ≥ 3 and suppose Assumption A holds. If an SCC F
satisfies strict weak no veto power and unanimity, then F can be implemented in
Nash equilibria.

Proof. Let Γ = (S, g) be a mechanism which is defined as follows: For each
i ∈ N , let Si = D × A × N, where N consists of the nonnegative integers. The
generic element of strategic space Si is noted by: si = (Ri, ai,mi). Each agent
announces a preference profile, an optimal alternative and nonnegative integer.
The function g is defined as follows:

Rule 1: If for each i ∈ N , si = (R, a, 1) and a ∈ F (R), then g(s) = a.
Rule 2: If for some i, sj = (R, a,m) for all j 6= i, a ∈ F (R) and si =

(Ri, ai,mi) 6= (R, a,m), then:

g(s) =

{
ai if ai ∈ LS(a,Ri) 6= Ø,
a otherwise.

Rule 3: In any other situation, g(s) = ai∗ , where i∗ is the index of the player
of which the number mi∗ is largest. If there are several individuals who satisfy this
condition, the smallest index i will be chosen.

Let us show that F (R) = g(N(g,�R, S)). The proof contains two steps:

Step 1. For all R ∈ D , F (R) ⊆ g(N(g,�R, S)).
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Let R ∈ D and a ∈ F (R). For each i ∈ N , let si = (R, a, 1). Then, by
definition of g, we have s ∈ N(g,�R, S)) and g(s) = a.

Step 2. For all R ∈ D , g(N(g,�R, S)) ⊆ F (R).
Let s ∈ N(g,�R, S), we show that g(s) ∈ F (R). For that, we study the various

possibilities of writing the profile of strategies s = (s1, s2, ..., sn).
Case a: Suppose there exists (R′, a,m) ∈ < × A × N, with a ∈ F (R′), such

that s is defined by si = (R′, a,m) for any i ∈ N . Then, by rule 1, g(s) = a. Let
R′ = R, a ∈ F (R). Assume that R′ 6= R. Let i be a partially honest individual.
The individual i can deviate to the truthful announcement of R by playing s̃i =
(R, a,m′) ∈ τi(R) with m′ > m. Then, by rule 2, a = g(s̃i, s−i)Rig(si, s−i) = a.
By partially-honest assumption, (s̃i, s−i) �R

i (si, s−i), therefore s /∈ N(g,�R, S), a
contradiction. We conclude that si ∈ τi(R) for all i ∈ N . Therefore, R′ = R and
hence g(s) = a ∈ F (R).

Case b: s = (s1, s2, ..., sn). Assume there is i ∈ N , R′ ∈ D and a ∈ A such
that a ∈ F (R′). For all j 6= i, sj = (R′, a,m) and si = (R′i, ai,mi) 6= sj. Then, by
rule 2,

g(s) =

{
ai if ai ∈ LS(a,R′i) 6= Ø,
a otherwise.

Subcase b1 : g(s) = ai 6= a
By definition of g, we have ai ∈ LS(a,R′i) 6= Ø. Take any b ∈ LS(a,R′i) 6= Ø

and a deviation s̃i for player i such that s̃i = (R̃, b, m̃) with m̃ > m. By Rule
2, g(s̃i, s−i) = b. Since s ∈ N(g,�R, S), then ai = g(s)Rig(s̃i, s−i) = b, i.e.,
b ∈ L(ai, Ri). Therefore ai ∈ LS(a,R′i) ⊆ L(ai, Ri). (1)

Next, for any other deviation j 6= i and any c ∈ A, let s̃j = (R̃, c, m̃) be
a deviation, where m̃ is the unique greatest integer in the profile (s̃j, s−j). By
rule 3, g(s̃j, s−j) = c. Since s ∈ N(g,�R, S), we have ai = g(s)Rig(s̃j, s−j) = c.
Therefore, for all j 6= i, A ⊆ L(ai, Rj). (2)

From (1), (2) and by strict weak no veto power, we have ai ∈ F (R).
Subcase b2 : g(s) = a
By the same reasoning as in Case a, a ∈ F (R).
Case c: s = (s1, s2, ..., sn): ∃k1, k2, k3 where sk1 6= sk2 , sk1 6= sk3 , sk2 6= sk3 ,

g(s) = al: ml is the maximum of the integers m. By Rule 3 and Unanimity,
g(s) ∈ F (R). Q.E.D.
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