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Abstract We define a new class of games, which we qualify as congestion
games with exact partition. These games constitute a subfamily of singleton
congestion games for which the players are restricted to choose only one strat-
egy, but they each possess their own utility function. The aim of this paper is
to develop a method leading to an easier identification of all Nash equilibria
in this kind of congestion games. We also give a new proof establishing the
existence of a Nash equilibrium in this type of games without invoking the
potential function or the finite best-reply property.
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1 Introduction

A central concept in game theory is the notion of an equilibrium. One of
the most widely used solution concepts for noncooperative games is the one
of Nash equilibrium. A Nash equilibrium is a state in which no player can
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improve his objective by unilaterally changing his strategy. Rosenthal was the
first to introduce, in 1973, a special class of noncooperative games, widely
known as congestion games. These games lie in the intersection between, on
the one hand, game theory, as they constitute noncooperative games, and on
the other hand, computer science because they can model diverse phenomena
such as processor scheduling, routing, and network design.

In congestion games, players’ strategies consist of subsets of resources, and
the utility of a player depends only on the number of players choosing the same
or some overlapping strategy. The utility a player derives from a combination
of resources is the sum of the payoffs associated with each resource included
in his choice. Rosenthal (1973) shows that congestion games always possess
Nash equilibria. This line of work has been continued by Monderer and Shapley
(1996) who established a connection between potential games and congestion
situations. An excellent survey of the related literature can be found in Voorn-
eveled et al (1999). However, Konishi et al (1997) and Quint and Shubik (1994)
consider that congestion games do not admit (in general) a potential function,
but are likely to admit a Nash equilibrium in pure strategies.

In 1996, Milchtaich introduced a new class of congestion games, namely the
congestion games with player-specific payoff functions, also called nonsymmet-
ric singleton congestion games or singleton congestion games, for short. Each
player has individual nonincreasing payoff functions and is allowed to choose
any resource but must choose exactly one. In other means, the players’ strate-
gies are singletons and the payoff functions not only are decreasing but at the
same time specific to each player. Milchtaich demonstrated that such games
do not generally admit an exact potential function, nonetheless, each game
in this class admits at least one Nash equilibrium that can be rehashed as a
terminal point of a particular improvement dynamic. Particularly, he showed
that such games possess the finite best-replay property (FBRP)1 and an ob-
vious consequence of the existence of the FBRP is the existence of a Nash
equilibrium. Even so, the mechanism of the FBRP allows to construct only
one Nash equilibrium. If we want to find all Nash equilibria, we have to re-
peat the FBRP process and this, maybe to the infinity . . .! Additionally, we
have to note that, until now, it does not exist in the literature a mathematical
formula of the potential function that allows to establish at least one Nash
equilibrium in such games. However, it seems both useful and interesting to
extend and at the same time simplify the analysis initiated by Milchtaich, by
taking as a starting point the following question: Is it possible to propose an
alternative mechanism that allows to describe all Nash equilibria, at least in
some particular cases of singleton congestion games?

In this paper, we give an answer to the above question. Specifically, we
examine a special case of singleton congestion games, which we qualify as

1 Paths in which in each step the unique deviator shifts to a strategy which is a best reply
against the strategies played by the other players are called best-reply paths. A best-reply
strategy need not be unique. If players deviate only when the strategy they are currently
playing is not a best-reply strategy then the path is a best-reply improvement path (Milch-
taich (1996)).
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congestion games with exact partition. Our aim is to prove that such games
possess at least one Nash equilibrium, by direct and constructive proofs, with-
out using either the notion of the potential function or the FBRP, to show how
to compute all equilibria and to give their structure using a simple and direct
method. Note that the characterization of the set of all equilibria, beyond its
theoretical interest, can be very useful when we have to choose between these
equilibria on the basis of performance criteria such as social optimality, or to
explore intrinsic proprieties of the game such as the price of anarchy2 (Kout-
soupias and C. H. Papadimitriou (1999)). The rest of this paper is organized
as follows: Section 2 provides the main definitions and notations of congestion
games, section 3 provides the result and section 4 concludes the paper.

2 Definitions and notations

A game (in strategic form) is defined by a tuple Γ = (N, (Si)i∈N , (ui)i∈N ),
where N = {1, 2, . . . , n} is a set of n players, Si a finite set of strategies
available to player i and ui : S = S1 × . . . × Sn → R is the utility function
of player i. The set S is the strategy space of the game, and its elements
are the (strategy) profiles. For a profile σ = (σi)i∈N on S, we will use the
notation σ−i to stand for the same profile with i’s strategy excluded, so that
(σ−i, σi) forms a complete profile of strategies. A (pure) Nash equilibrium of
the game Γ is a profile σ∗ such that each σ∗i is a best-reply strategy: For
each player i ∈ N , ui(σ∗) ≥ ui(σi, σ∗−i), for all σi ∈ Si. Thus, no player can
benefit from unilaterally deviating from his strategy. In a standard congestion
game, defined by Rosenthal (1973), we are given a finite set R = {1, . . . ,m}
of m resources. A player’s strategy is to choose a subset of resources among
a family of allowed subsets: Si ⊆ 2R, for all i ∈ N . A payoff function dr :
{1, . . . ,m} → R is associated with each resource r ∈ R, depending only on
the number of players using this resource. For a profile σ and a resource r,
the congestion on resource r (i.e. the number of players using r) is defined by
nr(σ) = |{i ∈ N : r ∈ σi}|. The vector (n1(σ), . . . , nm(σ)) is the congestion
vector corresponding to σ. The utility of player i from playing strategy σi in
profile σ is given by ui(σ) =

∑
r∈σi

dr(nr(σ)). Rosenthal shows that every
congestion game possesses at least one Nash equilibrium by considering the
exact potential function P : S → N with P (σ) =

∑m
r∈R

∑nr(σ)
j=1 dr(j),∀σ ∈ S

3.
An extension of congestion games is the monotone nonsymmetric singleton

congestion games (singleton congestion games for short), which can be seen as

2 When utilities are replaced by costs, the price of anarchy of a game is the ratio of the
social cost in the worst Nash equilibrium to the minimum social cost possible.

3 Rosenthal’s potential function shows that congestion games are potential. Monderer and
Shapley (1996) proved that every potential game can be represented in a form of a congestion
game. Thus, classes of potential games and congestion games coincide. Hence, congestion
games are essentially the only class of games for which one can show the existence of pure
equilibria with an exact potential function.



4 Samir SBABOU et al.

the intersection between Rosenthal’s and Milchtaich’s model. A game in this
class is defined by a tuple Γ (N,R, (dr)r∈R), where N is a set of n players, R is a
set of m resources/strategies (a player’s strategy consists of any single resource
in R) and dr is a nonincreasing payoff function associated with resource r. The
utility of player i for a profile σ is simply given by ui(σ) = dσi

(nσi
(σ)). We

note that these games are nonsymmetric : Players are restricted to choose only
one strategy, but they each have their own utility function. Since the utility of
a player derived from selecting a single resource depends only on the number
of the players doing the same choice, the specific utility function of this player
is simply a mapping: ui : R × {1, . . . , n} → R, (r, k) 7→ ui(r, k), where ui
decreases with k.

In the following section, we will use a method which attempts to simplify
the analysis of singleton congestion games. This method makes use of a tech-
nique, initially introduced by Sbabou et al (2010, 2011), concerning the use of
the ordinal representation of preferences. Indeed, in the case of nonsymmetric
singleton congestion games, we replace the values of the payment functions by
their ranks in a preference ordering representing the specific utility function
of each player. More formally, a singleton congestion game with player-specific
will be represented by a tuple Γ (N,R,-i) where N is a set of n players, R a set
of resources and -i a weak ordering on R×{1, . . . , n}. In the ordinal context,
a strategy profile σ∗ is a Nash equilibrium of the game Γ if σ∗ %i (σi, σ∗−i)
for all σi in R. A congestion vector σ∗ = (n1, . . . , nm) corresponds to a Nash
equilibrium if, for all r, r′ in R with r 6= r′, we have (r, nr) %i (r′, nr′ + 1).
Thus, no player can benefit from joining a group of players sharing a different
resource.

3 Congestion games with exact partition

Before introducing the concept of congestion games with exact partition, we
give some decisive definitions.

Definition 1 Let G(N,R, (-i)i∈N ) be a singleton congestion game. An n-
sequence (or sequence of the n-last terms) derived from a weak ordering -i is
a subset T i of R×N , such that |T i| = n.

In the sequel, when there is no ambiguity, we denote by T i both the n-sequence
T i and the order (induced by -i) on T i.

Remark 1 If the utility function -i represents a strict ordering, then there
is only one n-sequence for each player, outcome of ≺i.

Example 1 Let N = {1, 2, 3} and R = {a, b, c}. For simplicity, we will denote
the couple (r, k) by rk. Suppose that the ordinal utility function for each player
is given by the following strictly decreasing ordering:
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3a ≺1 3b ≺1 2b ≺1 2a ≺1 3c ≺1 a ≺1 2c ≺1 c ≺1 b︸ ︷︷ ︸ .
3c ≺2 3b ≺2 3a ≺2 2a ≺2 2c ≺1 c ≺2 2b ≺1 b ≺1 a︸ ︷︷ ︸ .
3c ≺3 3b ≺3 2b ≺3 3a ≺3 2c ≺3 2a ≺3 c ≺1 a ≺1 b︸ ︷︷ ︸ .

By definition 1, the unique 3-sequence for each player i are T 1 = {2c, c, b},
T 2 = {2b, b, a} and T 3 = {c, a, b}.

Definition 2 Let G(N,R, (-i)i∈N ) be a singleton congestion game. A con-
figuration of G is a choice of an (ordered) n-sequence for each player i ∈ N .

Thus, a configuration contains an n-sequence for each player. There are several
possible configurations for a game. We can represent a configuration by an
array of n rows and n columns: The first line contains T 1, the second contains
T 2, and so on.

Remark 2 When the preference orders are strict, there is only one configu-
ration for each player.

Definition 3 Let G(N,R, (-i)i∈N ) be a singleton congestion game and (T 1,
T 2, . . . , Tn) an (ordered) configuration. For each resource r ∈ R, let αi(r) =
max {p : (r, p) ∈ T i}, be the maximum number of players that can choose the
resource r and α(r) = max {p : |i ∈ N : (r, p) ∈ T i| ≥ p} be the greater integer
p such that, there exist at least p players verifying the condition αi(r) ≥ p.
The entity α(r) allows to determine the congestion vector that corresponds to
Nash equilibrium.

To get a better idea of the above definitions, let us follow them through an
example.

Example 2 Consider N = {1, 2, 3, 4, 5, 6} and R = {a, b, c}. Suppose that for
each player i and for each resource r the utility function is strictly decreasing
in the number of players choosing r. To apply the definitions 2 and 3, it is not
necessary to know the utility functions in their entirety: We have just need
to know the order of the n-last terms. Therefore, the sequences of the n last
termes are only required. Suppose that they are given by:

. . . 4a ≺1 2c ≺1 c ≺1 3a ≺1 2a ≺1 a.
. . . 4c ≺2 2b ≺2 3c ≺2 2c ≺2 b ≺2 c.
. . . b ≺3 c ≺3 4a ≺3 3a ≺3 2a ≺3 a .
. . . 3c ≺4 2a ≺4 2c ≺4 b ≺4 a ≺4 c.
. . . 2c ≺5 3a ≺5 c ≺5 2a ≺5 b ≺5 a.
. . . 3a ≺6 2a ≺6 a ≺6 2c ≺6 c ≺6 b.
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Now we can represent the individual preferences T i by the following table:

T 1 4a 2c c 3a 2a a

T 2 4c 2b 3c 2c b c

T 3 b c 4a 3a 2a a

T 4 3c 2a 2c b a c

T 5 2c 3a c 2a b a

T 6 3a 2a a 2c c b

Table 1: The n-sequence for each player

It is easy to find the integer α(r) for each resource r. For example, for
the alternative a, we observe that 4a does not satisfy the above definition,
since we have only two players (1 and 3) so that 4a appears in the sequence
of the last 6 terms. However, we have four players that 3a appears in the line
representing T i. We have: max{p : |i ∈ N : (a, p) ∈ T i| ≥ p} = 3. Hence,
α(a) = 3. Similarly, we can see that α(b) = 1 and α(c) = 2.

Now we are ready to define congestion games with exact partition.

Definition 4 A singleton congestion game G(N,R, (-i)i∈N ) is called sin-
gleton congestion game with exact partition if there exists a configuration
(T 1, T 2, . . . , Tn) with exact partition, i.e., a configuration that satisfies the

condition
m∑
r=1

α(r) = n.

In the example 2, we have
∑
r∈R

α(r) = α(a) + α(b) + α(c) = 6 = n. So, the

game is an exact partition.

Remark 3 We already know by Milchtaich (1996) that any singleton conges-
tion game admits at least one Nash equilibrium. The following result provides
a simple proof of Milchtaich’s result in the case of games of exact partition.
Our proof is straightforward (it is not based on reasoning by induction) and
does not involve any mechanism of improvement to obtain a Nash equilibrium:
This equilibrium is easily constructible from the table including the sequences
of the n last terms.

4 The result

Theorem 1 Every singleton congestion game satisfying the condition of the
exact partition admits at least one Nash equilibrium.

The following example illustrates the above theorem and shows how to
easily build all Nash equilibria in games of exact partition.
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Example 3 Let N = {1, 2, 3, 4, 5, 6} and R = {a, b, c}. Individuals’ preferences
are summarized in Table 1.

By applying our theorem, we can easily find the congestion vector and
also all Nash equilibria. We have α(a) = 3, α(b) = 1 and α(c) = 2, so
α(a) + α(b) + α(c) = 6, this is a game of exact partition. All Nash equi-
libria of this game have as congestion vector, the vector (3a, b, 2c). From this
vector, we can find all Nash equilibria of the game. We begin by reviewing the
classification of pairs (a, 3), (b, 1) and (c, 2) that is to say, 3a, b and 2c in the
preferences of each player:
T 1: b ≺1 2c ≺1 3a (player 1 may choose a or c as na �1 nb + 1, na �1 nc + 1,
nc �1 na + 1 and nc �1 nb + 1).
T 2: 3a ≺2 2c ≺2 b  player 2 may choose b ou c.
T 3: 2c ≺3 b ≺3 3a  player 3 choose only a.
T 4: 3a ≺4 2c ≺4 b  player 4 may choose b or c.
T 5: 2c ≺5 3a ≺5 b  player 5 may choose b, c or a.
T 6: 3a ≺6 2c ≺6 b  player 6 may choose b, c or a.

We can build the next tree to detect all Nash equilibria:

∅

- - - - - - - - - - a - - - - - - - - - -

- - - - - b - - - - -

- - - - - a - - - - -

- - - - - c - - -

- - - a -

- - - c -

- c -

- a -

- - - c - - -

- - - a - - -

- - b - -

- c -

- a -

- a -

- c -

- - c - -

- b -

- a -

- a -

- b -

- - - - - - - - - c - - - - - - - - - Player 1

- - - b - - -

- - - a - - -

- - - c - - -

- - - a - - -

- - - a - - -

- - c - - Player 2

- - a - - Player 3

- - b - - Player 4

- - a - - Player 5

- - a - - Player 6

We can read the above tree as follows: Player 1 has two possible choices: a
and c. If player 1 chooses a, player 2 has two possible choices, b or c. If player
2 chooses b, player 3 can only choose a, player 4 has to choose c, player 5 has
two possible choices, a or c. If player 5 chooses a, then player 6 must choose
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only the alternative c (always respecting the number of resources to choose
α(a) = 3, α(b) = 1 and α(c) = 2). Thus, the Nash equilibria in this exam-
ple are: σ1 = (a, b, a, c, a, c), σ2 = (a, b, a, c, c, a), σ3 = (a, c, a, b, c, a), σ4 =
(a, c, a, b, a, c), σ5 = (a, c, a, c, b, a), σ6 = (a, c, a, c, a, b), σ7 = (c, b, a, c, a, a),
σ8 = (c, c, a, b, a, a).

Proof Let (T 1, T 2, . . . , Tn) be a configuration (ordered) of exacte partition of
the game G(N,R, (-i)i∈N ). We have :

m∑
r=1

α(r) = n (4.1)

Let N0 = N and R0 = R. For each r ∈ R0, consider B0(r) = {i ∈ N0 :
(r, α(r)) %i (r′, α(r′)),∀r′ ∈ R0}. B0(r) is the set of players for whom the pair
(r, α(r)) is preferred (or equivalent) to all other pairs (r′, α(r′)). Note that
when orders are large, several resources r can be such that:

(r, α(r)) %i (r′, α(r′)), ∀r′ ∈ R0 (4.2)

There exists at least one resource r ∈ R0 such that: |B0(r)| ≥ α(r) as
m∑
r=1

α(r) = n (according to (4.1)) and
m∑
r=1

|B0(r)| ≥ n (the orders T i not nec-

essarily strict, for the same player, several couples (r, α(r)) may be ex-aequo
cases verifying (4.2)). Choose (arbitrarily) a resource r1 inR such that: |B0(r1)|
≥ α(r1), let A0(r1) be a subset of B0(r1) such that: |A0(r1)| = α(r1) and
∀i ∈ A0(r1), ∀j ∈ B0(r1)\A0(r1), αi(r1) ≥ αj(r1). We note that:
1. A0(r1) is a subset of B0(r1) containing α(r1) players having values αi(r1)
greater (or equal) than values αj(r1) of all the players of B0(r1)\A0(r1).
2. There may be several possible choices for A0(r1).

Once A0(r1) constructed, we consider: N1 = N0\A0(r1), R1 = R0\{r1}.
For each r ∈ R1, let B1(r) = {i ∈ N1 : (r, α(r)) %i (r′, α(r′)),∀r′ ∈ R1}.
There exists at least one resource r ∈ R1 such that B1(r) ≥ α(r) because∑
r∈R1

α(r) = n− α(r1) and
∑
r∈R1

|B1(r)| ≥ n− α(r1). We choose (arbitrarily)

r2 ∈ R1 such that B1(r2) ≥ α(r2). We find a subset A1(r2) = α(r2) and
∀i ∈ A1(r2), for all j ∈ B1(r2)\A1(r2), αi(r2) ≥ αj(r2).

Once A1(r2) constructed, we have: N2 = N1\A1(r1), R2 = R1\{r2} (=
R\{r1, r2}). For each r ∈ R2, let: B2(r) = {i ∈ N2 : (r, α(r)) %i (r′, α(r′)),
∀r′ ∈ R2}. There exists at least one resource r ∈ R2 such that B2(r) ≥ α(r).
We choose r3 ∈ R2 such that B2(r3) ≥ α(r3). We find a subset A2(r3) of
B2(r3) such that : |A2(r3)| = α(r3) and ∀i ∈ A2(r3), ∀j ∈ B2(r3)\A2(r3),
αi(r3) ≥ αj(r3).

In general, supposing Ak−1(rk) built (for k ≥ 1) there are two cases:
1. |A0(r1)|+ . . .+ |Ak−1(rk)| = n, in this case we stop the process.
2. |A0(r1)| + . . . + |Ak−1(rk)| < n, in this case we continue the process by
considering: Nk = Nk−1\Ak−1(rk), Rk = Rk−1\{rk}. For each r ∈ Rk, let
Bk(r) = {i ∈ Nk : (r, α(r)) %i (r′, α(r′)),∀r′ ∈ Rk}. There exists at least one
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resource r ∈ Rk such that Bk(r) ≥ α(r) as
∑
r∈Rk

α(r) = n−(α(r1)+ . . .+α(rk))

and
∑
r∈Rk

|Bk(r)| ≥ n−(α(r1)+ . . .+α(rk)). We choose (arbitrarily) rk+1 ∈ Rk

such that Bk(rk+1) ≥ α(rk+1). We extract a subset Ak(rk+1) of Bk(rk+1)
such that: |Ak(rk+1)| = α(rk+1) and ∀i ∈ Ak(rk+1), ∀j ∈ Bk(rk+1)\Ak(rk+1),
αi(rk+1) ≥ αj(rk+1).

Note that when the process stops at the step l, we have : The profile σ∗ =
(σ∗1 , . . . , σ

∗
n) is a Nash equilibrium, with σ∗i = rk+1 if and only if i ∈ Ak(rk+1),

for all i in N .
For all i ∈ A0(r1), σ∗i = r1 and by definition of B0(r1) we get (r1, α(r1)) %i

(r′, α(r′)),∀r′ ∈ R0 = R (i.e., (r′, α(r′)) %i (r′, α(r′)+1)). Thus, (r1, α(r1)) %i
(r′, α(r′) + 1) ∀r′ ∈ R. For all i ∈ A1(r2), σ∗i = r2 and by definition of B1(r2):

(r2, α(r2)) %i (r′, α(r′)), ∀r′ ∈ R1 = R\{r1} (4.3)

Thus, (r2, α(r2)) %i (r′, α(r′) + 1) ∀r′ ∈ R\{r1}. Remains to show that:
(r2, α(r2)) %i (r1, α(r1) + 1). Suppose the contrary. That is to say:

(r1, α(r1) + 1) �i (r2, α(r2)) (4.4)

We will have (r1, α(r1)) �i (r2, α(r2)) and using (4.3), we obtain : (r1, α(r1))
%i (r′, α(r′)), ∀r′ ∈ R0 = R. So, i would be in B0(r1). Accordingly to (4.4),
(r1, α(r1) + 1) �i (r2, α(r2)), always using (4.3), we will have: (r1, α(r1) + 1)
appears into T i (because (r2, α(r2)) appears into T i). i was not retained into
A0(r1). It follows that all players j of A0(r1) are such that (r1, α(r1) + 1)
appears into T j . This is absurd because otherwise α(r1) ≥ α(r1) + 1 (that is
to say that there will be at least α(r1) + 1 players j having (r1, α(r1) + 1) in
T j), which is impossible. So, (r2, α(r2)) %i (r1, α(r1) + 1). Therefore, we have,
for all i ∈ A1(r2), (r2, α(r2)) �i (r′, α(r′) + 1), ∀r′ ∈ R.

In general, for all i ∈ Ak(rk+1), we have by definition of Bk(rk+1): (rk+1,
α(rk+1)) %i (r′, α(r′)),∀r′ ∈ Rk, with Rk = R\{r1, . . . , rk}. So (rk+1, α(rk+1))
%i (r′, α(r′) + 1), ∀r′ ∈ R\{r1, . . . , rk}. A reasoning similar to that concerning
σ′i = r2, shows that: (rk+1, α(rk+1)) %i (r′, α(r′) + 1), ∀r′ ∈ {r1, . . . , rk}.
Finally, for all i ∈ Ak(rk+1), (rk+1, α(rk+1)) %i (r′, α(r′) + 1), ∀r′ ∈ R. This,
shows that σ∗ is a Nash equilibrium. �

5 Conclusion and open problems

Our contribution was obtained by reviewing the results of Milchtaich for non-
symmetric singleton congestion games. The study of this kind of games, led
us to isolate a sub-class of congestion games that we have called ”congestion
games with exact partition”, for which we have shown the ability to find all
Nash equilibria. We presented an alternative proof to the one given by Milch-
taich, to show how to calculate these equilibria more easily. However, our
method is not valid for finding Nash equilibria in congestion games without
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exact partition. In the latter case, we need to slightly modify the method de-
scribed above, in order to obtain a congestion vector corresponding to a Nash
equilibrium, which will be the aim of our future research.
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