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Abstract

We study the relationship between the distribution of individuals�attributes over the pop-

ulation and the extent of risk sharing in a risky environment. We consider a society where

individuals di¤ering with respect to risk or their degree of risk aversion form risk-sharing coali-

tions in the absence of �nancial markets. We obtain a partition belonging to the core of the

membership game. It is homophily-based: the less risky (or the more risk tolerant) agents con-

gregate together and reject more risky ones (or less risk tolerant ones) into other coalitions. The

distribution of risk or risk aversion a¤ects the number and the size of these coalitions. It turns

out that individuals may pay a lower risk premium in more risky societies. We also show that a

higher heterogeneity in risk or risk aversion leads to a lower degree of partial risk-sharing. The

empirical evidence on partial risk sharing can be understood when the endogenous partition of

society into risk-sharing coalitions is taken into account.
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1 Introduction.

In developing economies where �nancial markets are lacking, individual incomes vary widely (see, in

particular, Townsend, 1994, for ICRISAT villages in India or Dubois, Jullien and Magnac, 2008, for

Pakistan villages). Nonetheless, the idiosyncratic part of income risk is relatively large, suggesting

that insurance against shocks is desirable (Townsend, 1995, Dercon, 2004). Thus we should expect

risk-averse households to pool risk in order to smooth consumption. If risk is fully insured, the

theory tells us that individual consumption is determined by aggregate consumption (see Borch,

1962, Arrow, 1964, Wilson, 1968). However, this proposition has been subject to many empirical re-

buttals. In developing economies, the empirical evidence supports partial risk sharing. Households

are able to protect consumption against adverse income shocks but full insurance is not achieved

(see, among many others, Townsend, 1994, Kazianga and Udry, 2005).1 Moreover, empirical works

identify risk-sharing groups and networks smaller than the entire society. For instance, Fafchamps

and Lund (2003) show that mutual insurance is implemented within con�ned networks of families

and friends. Mazzocco and Saini (2009), using ICRISAT data, show that the relevant unit to test

for e¢ cient risk sharing is the caste and not the village. Other individual characteristics also appear

to be key determinants of membership in risk-sharing groups or networks. Geographic proximity as

well as age and wealth di¤erences also play a role in the formation of networks (see Fafchamps and

Gubert, 2007). Using data on group-based funeral insurance in Ethiopia and Tanzania, Dercon et

alii (2006) provide evidence of assortative matching according to physical distance, kinship, house-

hold size and the age of the member. Arcand and Fafchamps (forthcoming) �nd robust evidence

of individuals�sorting with respect to physical or ethnic proximity as well as wealth and household

size for community-based organizations in Senegal and Burkina Faso.2 It turns out that the dis-

tribution of individuals�attributes over the population plays a key role in group memberships and

the extent of risk sharing.

In the present paper, we develop a model of endogenous formation of risk-sharing coalitions

that allows us to characterize the relationship between ex ante heterogeneity among individuals

with respect to their exposure to risk or their risk aversion and the equilibrium size of risk-sharing

groups. Our analysis stresses that the relationship between the distribution of risk and the pattern

of risk-sharing coalitions is key to understand partial risk sharing.

Formally, we �rst study a society comprised of many individuals, each one characterized by

1Townsend (1995), Ray (1998), Dubois (2002), or Dercon (2004) are excellent surveys of the literature. For

developped economies also, empirical evidence does not support the full insurance hypothesis. See Mace (1991),

Cochrane (1991), Hayashi, Altonji and Kotliko¤ (1996), Attanasio and Davis (1996).
2See also the survey of Fafchamps (2008) on the role of families and kinship networks in sharing risk.
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a speci�c value of the variance of the distribution from which is drawn the idiosyncratic shock.3

Individuals have the possibility to form a group in order to mutualize risk. We consider that

individuals commit to sharing the random component of their income equally with members of their

risk-sharing group. Given the membership, risk sharing is e¢ cient. We examine the segmentation

of society into such risk-sharing groups.4 We show that the resulting core partition exists and

is unique (under some mild assumption). It turns out that the key dimension of the coalition

formation process is risk heterogeneity measured by ratios of variance between individuals. This

leads the core partition to be homophily-based: coalitions gather together agents similar with

respect to the variance of the idiosyncratic shock. In this sense, the extent of risk sharing is limited

by the formation of coalitions due to heterogeneity. Two individuals belonging to the same society

do not necessarily share risk in the same coalition.

We study the impact of speci�c variance schedules on the core partition and show thanks to

these cases how the number and the size of coalitions belonging to the core partition are a¤ected

by the distribution of risk within society.

De�ning an aggregate risk premium, we compare between two societies with equal number of

individuals the amount of resources devoted to risk sharing. We prove that a more risky society (in

the sense of second-order stochastic dominance) comprised of risk averse individuals may devote

less resources to risk sharing than a less risky one. This implies that some individuals may prefer

to live in the more risky society. This result relies on the fact that risk heterogeneity is the key

determinant of the formation of coalitions.

We also discuss the empirical implications of our model. Most empirical studies have found

evidence of partial risk sharing. This can be explained by the fact individuals sort themselves

into risk-sharing groups smaller than the whole society. We show how the number and the size of

risk-sharing coalitions can a¤ect the values of the coe¢ cients of the econometric speci�cation of the

consumption function. Following empirical works (see in particular, Jalan and Ravallion, 1999, and

Suri, 2009), we consider that the average value of the coe¢ cient on individual income measures the

extent of risk sharing. One implication of the result stated above is that this coe¢ cient is larger is

larger, respectively smaller, when there is more, respectively less, discrepancy between idiosyncratic

shocks variances.

These results highlight that these two dimensions (extent of risk sharing and aggregate risk pre-

mium) matter for the assessment of risk sharing in society when social segmentation endogenously

3The heterogeneity among individuals with respect to their variance could be explained by the fact that individuals

do not use the same technology and are di¤erently exposed to risks (see for instance Conley and Udry, 2010).
4Ghatak (1999), Chiappori and Reny (2005), Genicot (2006), Legros and Newman (2007), study risk-sharing

groups formation but these works consider that the size of groups is exogenously given.
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emerges. Take two societies one more risky than the other one. The more risky society may be

characterized by a higher aggregate risk premium. According to this dimension, we may conclude

that the insurance against risk is worse in this society. However, if this more risky society is more

homogenous leading to larger risk-sharing coalitions then the extent of risk sharing would be larger

which is commonly interpreted as a better insurance outcome. Therefore, we cannot rely on one

indicator only to assess the risk sharing outcome.

In order to check the robustness of our approach, we discuss the alternative case where indi-

viduals di¤er in their aversion to risk. That is, we focus on heterogeneity a¤ecting the individual

utility functions. We prove that our propositions carry over to this case, even though the logic

behind the formation of the core partition di¤ers. In this case, agents are willing to cluster with

the most risk tolerant agents.

The relationship between risk and group formation has already been studied by various authors.

In particular, Genicot and Ray (2003) develop a group formation approach where one risk-sharing

coalition must be robust to potential subgroup deviations. This stability condition may limit the

size of the risk-sharing coalition. Bold (2009) solves for the optimal dynamic risk-sharing contract

in the set of coalition-proof equilibria. We depart from these works from two respects. First,

we focus on heterogeneity of individuals�attributes as the force limiting the size of risk-sharing

coalition instead of the absence of commitment. Second, we study the partition of society into

possibly multiple coalitions. Our work is also closely related to Taub and Chade (2002) who study

in a dynamic setup whether the current core partition is immune to future individual defections.

Our focus is di¤erent as we build a setup that allows us to characterize a relationship between (i)

the risk characteristics of a society, (ii) the membership and size of risk-sharing groups and (iii) the

extent of risk coping. Our paper bears also some similarities with Henriet and Rochet (1987) who

develop a model of endogenous formation of mutuals using a cooperative game theoretical approach.

The modelling strategy is di¤erent from ours as they assume a continuum of agents, the existence

of congestion costs and a binomial distribution of shock. Further, they focus on formal insurance

activity and do not address the issue of mutualization of risk under informal insurance schemes.

Finally, Bramoullé and Kranton (2007) develop a model of network formation to tackle the risk

sharing issue. As they consider identical individuals, they do not examine how heterogeneity shapes

the architecture of networks.

The plan of the paper is as follows. In the following section, we present our coalition-formation

framework with individuals di¤ering with respect to the exposure to risk. We then characterize

the partition that emerges and study the relationship between the risk distribution, the size of

risk-sharing groups and the extent of risk sharing. Section 4 discusses the empirical implications
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of our theoretical setup. In section 5, we study a coalition-formation framework where individuals

di¤er with respect to their risk aversion. Section 6 concludes.

2 The Model.

We consider a society I formed of N agents, indexed by i = 1; :::; N . These individuals live

T periods. There is no production in this society and agents are endowed with quantities of a

non-storable good. At each date t; the individual endowment yit allotted to individual i has a

deterministic component wit and is a¤ected by an idiosyncratic risk "it and a common shock �t :

yit = wit + "it + �t

where �t is i.i.d across individuals and time and normally distributed: �t  N (0; �2�). Moreover,
"it is i.i.d. across time and normally distributed: "it  N (0; �2i ).

Individuals have instantaneous CARA utility functions and, at date 0, agent i is characterized

by the following expected utility function:

Ui(cit) = �E0

"
1

�i

TX
t=1

�t�1e��icit

#

with E0 the mathematical expectation operator at date 0, �i the absolute risk aversion, � the

discount factor and cit the consumption of agent i at date t.

There is perfect information in the following sense: the various idiosyncratic variances are public

information and the realised individual shocks are also perfectly observed by all agents when they

occur. It is assumed that there are no �nancial markets allowing any agent to insure himself against

his idiosyncratic risks. But agents have the possibility to form groups in order to cope with risk

according to a particular informal risk-sharing rule that will be presented in the next section.

2.1 Risk-sharing Coalitions.

Without loss of generality, we index individuals as follows: for i and i0 = 1; ::; N with i < i0 then

�2i < �2i0 . We will thus say that a lower indexed individual is a �less risky agent�(strictly speaking,

individual risk is associated with the law of motion of "i).

Given these di¤erences among individuals, we de�ne �i � �2i
�2i�1

for i = 2; :::; N: �i is called the

�risk ratio�between agents i� 1 and i. We will use the following

De�nition 1 Any society I can be characterized by a risk-ratio schedule � = f�2; �3; :::; �Ng with
�i � �2i

�2i�1
for i = 2; :::; N:
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We consider that individuals have the possibility to group themselves in order to pool risk.

We denote by S a group S � I, formed of a �nite number n � N of agents. S is a subset of

I whose membership is left unde�ned at this stage. The good being assumed non-storable, the

time subscript is dropped in the sequel. We will also loosely refer to � as capturing society�s �risk

heterogeneity�.

In order to illustrate the impact of heterogeneity with respect to risk, we assume full commit-

ment:

(i) no agent is able to leave on her chosen coalition once the state of nature is realized;5

(ii) within each coalition, individuals commit to applying the following �mutual insurance rule�:

ci = wi +
1
�i

1
n

P
k2S

1
�z

0@� +
P
k2S

"k

n

1A (1)

where n is the cardinal of S. The mutual insurance rule applied in each coalition is such that

individual consumption is optimal within the risk-sharing group.6 The consumption of agent i in

a given risk-sharing group, based on the risk-sharing rule is a function of the ratio of individual

absolute risk tolerance coe¢ cient to the average absolute risk tolerance in the group. The lower

the average risk tolerance with respect to the risk tolerance of agent i, the higher the consumption

of agent i. This comes from the fact that the less risk tolerant agents in coalition Sj , the higher

their transfers insuring against risk.

An alternative assumption would be that the sharing rule is negotiated after the formation of

a coalition.7 However various reasons (cultural and religious values, constitutional and political

constraints, bargaining and information issues) may hamper the capacity to negotiate a sharing

rule within a coalition. From this perspective looking at the case where the sharing rule is given

provides a useful benchmark.

Let us �rst consider the case where individuals are characterized by the same risk aversion

parameter but di¤er with respect to their risk. In this case, equation (1) becomes:

ci = wi +

P
k2S "k
n

+ �: (2)

Notice that when the non-stochastic component is identical for all agents, this rule amounts to

the equal sharing rule.8 This rule has the crucial advantage of focusing on transfers among agents
5This is a key di¤erence with for instance Genicot and Ray (2003).
6Notice that this rule corresponds to the optimal level of consumption when the Pareto weights denoted by �i

are such that ln�i = �iwi (see in particular Equation (22) in Appendix 7.4 where we derive optimal allocations of

resources).
7Chiappori and Reny (2005) address this issue in the case of a matching model.
8For the use of the equal sharing rule, see e.g. Bramoullé and Kranton (2007).
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solely justi�ed by the objective of sharing risk among individuals as these transfers relate to the

random components of income. In other words, we abstract from any redistribution motive not

related to risk sharing. All our results will be deduced from this sole rationale.

The expected utility of individual i in group S; Vi(S); applying this insurance rule is:

Vi(S) = �E
�
1

�
e��wi��

P
k2S "k
n

���
�
:

As we assume a CARA utility function and normal distribution for each idiosyncratic shock, the

Arrow-Pratt approximation is exact:

Vi(S) = �
1

�
e
��

h
wi� �

2n2

P
k2S �

2
k�

�
2
�2�

i
: (3)

We de�ne the certainty-equivalent income for individual i in group S; denoted by !i (S) ; as:

!i (S) = wi �
�

2

X
k2S

�2k
n2
� �

2
�2� : (4)

The risk premium for any individual i in group S; denoted by �(S), is equal to �
2

P
k2S

�2k
n2
+ �

2�
2
� :

It is immediate to remark that it is the same for every member of S.

The individual gain for agent i from membership to group S rather than to group S0 amounts

to the reduction in the risk premium:

�(S0)� �(S):

In other words, an agent prefers joining a group (provided she is accepted in this group) in

which her certainty-equivalent income is higher. The more risky an agent, the more he bene�ts

from belonging to a given group (rather than remaining alone): individual gains from a group are

di¤erentiated and actually increasing with the riskiness of the agent. This is the core characteristics

of a group functioning under our insurance rule.

Hence, the formation of a group relies on the following trade-o¤. Accepting a new member has

two opposite e¤ects: on the one hand, everything else equal, the higher its size, the lower the risk

premium; on the other hand, accepting an individual increases the sum of individual risks leading

members to pay a higher risk premium. Therefore when assessing the net bene�t of accepting a

given individual, characterized by a particular variance, an insider has to weigh these two e¤ects.

2.2 The Core Partition.

From above, it is immediate that the characteristics and more speci�cally the size of a group

matters for its members. In particular, as agents have di¤erent needs for risk sharing and expose

the members of the group to their idiosyncratic risk, the membership of a group is a matter of

7



concern. This leads to the question of the endogenous segmentation of society into risk-sharing

groups.

We consider that a group is a coalition or club of individuals and a partition of the society is a

set of coalitions. More formally, we use the following

De�nition 2 A non-empty subset Sj of I is called a coalition and P = fS1; :::; Sj ; :::; SJg for

j = 1; :::; J is called a partition of I if (i)
JS
j=1

Sj = I and (ii) Sj
T
Sj0 = ; for j 6= j0:

According to this de�nition, any individual belongs to one and only one coalition. The size of

the j � th coalition, Sj � I, is denoted by nj .
To address the issue of segmentation of society into risk-sharing coalitions, we consider the

following sequence of events:

1. Agents form risk-sharing coalitions and a partition of society is obtained.

2. Individuals commit to paying transfers according to the insurance rule of Equation (2) in

each coalition.

3. Idiosyncratic shocks are realized. Agents then consume their after-transfer income.

We solve this coalition-formation game by looking at a core partition de�ned as follows:

De�nition 3 A partition P� =
n
S�1 ; :::; S

�
j ; :::; S

�
J

o
belongs to the core of the coalition-formation

game if:

@$ � I such that 8i 2 $; Vi($) > Vi(P�)

where Vi(P�) denotes the utility for agent i associated with partition P�:

According to this de�nition, a core partition is such that no subset of agents is willing to

secede. It amounts to say that coalitions are formed according to a unanimity rule: (i) no one can

be compelled to stay in a given group and (ii) to be accepted in a group, there must be unanimous

consent by all existing members of this group. Given the mutual insurance rule, the core of the

coalition-formation game we are looking for is Pareto-optimal.

3 Risk Exposure Heterogeneity and the Pattern of Risk-Sharing

Coalitions.

In this section, we provide results on the impact of individual heterogeneity with respect to risk on

the segmentation of society in multiple risk-sharing coalitions.
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3.1 The Characteristics of the Core Partition.

First focusing on the outcome of endogenous formation of risk-sharing coalitions, we are able to

o¤er the following:

Proposition 1 A core partition P� =
n
S�1 ; :::; S

�
j ; :::; S

�
J

o
exists and is characterized as follows:

i/ It is unique if

8z = 2; :::; N � 1; �z+1 � �z
�z+1 � 1

� � 1

z + 1
: (5)

ii/ It is consecutive, that is, if i and ei both belong to S�j then 8i0; i > i0 > ei; i0 2 S�j .
iii/ For any two individuals i 2 S�j and i0 2 S�j0 such that �2i < �2i0, then �(S

�
j ) 5 �(S�j0):

Proof. See Appendix.

The existence of a core partition of I relies on the common ranking property proposed by Farrell

and Scotchmer (1988) and Banerjee et al. (2001).9

The �rst result, i=, provides a su¢ cient condition for the core partition to be unique. The

condition on uniqueness depends on the rank of individuals. If the risk ratios are increasing with

the index z, this condition is always met. The condition may appear stringent when �z > �z+1;8z =
2; :::; N � 1. The expression �1

z+1 is an increasing function of z which equals
�1
3 when z = 2; �1N

when z = N � 1; and tending to 0 when N is su¢ ciently large.10

Turning to the characteristics of the core partition, the second result, ii=, is about consecutivity

which captures the homophily feature. Coalitions belonging to the core partition include agents

who are �close� in terms of exposure to risk. Take an individual who has to choose between two

individuals in order to form a risk-sharing coalition. It is easy to check that he always prefers the

less risky of the pair. This implies that if an agent i is willing to form a coalition with some other

agent i0, then all agents with a lower risk than i0 are also accepted by i in the coalition.11

The third result, iii=; is in line with consecutivity. Take the less risky individual characterized

by �21: He is accepted by any possible coalition and chooses the group that incurs the lowest risk

9Admittedly, the result does not rule out the existence of singletons within the core partition. Singletons are

degenerate risk-sharing coalitions.
10Let us stress that the core partition is generically unique (see for instance Farrell and Scotchmer, 1988) but we

need to provide a su¢ cient condition for uniqueness in order to proceed to our comparative static analysis.
11The consecutivity property is obtained in other models of risk-sharing agreements (see for instance Henriet and

Rochet, 1987, and Legros and Newman, 2007).
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premium. More risky individuals may not be accepted by agents characterized by low risks to pool

resources in a same group. They thus pay a higher risk premium in other coalitions.12

Given the consecutivity property, from now on, we adopt the following convention that for any

S�j and S
�
j0 ; j

0 > j when �2i < �2i0 ; 8i 2 S�j ;8i0 2 S�j0 : Another way to express consecutivity is to say
that a core partition can be characterized by a series of �pivotal agents�, that is agents who are

the most risky agents of the coalition they belong to:

De�nition 4 Given the coalition S�j of size nj in the core-partition, the pivotal agent, de�ned

by the integer pj 2 f1; :::; Ng ; associated with S�j and the next agent pj + 1 are characterized by
variances �2pj and �

2
pj+1

; respectively, such that:

�(S�j nfpjg) � �(S�j ) and �(S
�
j [ fpj + 1g) > �(S�j ):

Hence,

�2pj � [2nj � 1]
X

k2Sjnfpjg

�2k
(nj � 1)2

(6)

and

�2pj+1 > [2nj + 1]
X
k2Sj

�2k
nj2

: (7)

A pivotal agent, associated with the j � th coalition S�j ; is by the consecutivity property, the

most risky agent belonging to this club. He is the ultimate agent for which the net e¤ect of his

inclusion in the club is bene�cial for all other (less risky) agents belonging to the club. Even though

he increases the sum of risks in the club (i.e. the numerator of the risk premium), thus in�icting

a loss to their welfare, his addition also increases its size (the denominator of the risk premium).

Actually, his inclusion decreases the risk premium paid by each member of the coalition S�j : But if

this coalition were to include the next agent, pj + 1; as he is more risky than pj ; the net e¤ect of

his inclusion would be negative for all other agent of S�j : Therefore they prefer not to let him in.

In the brief, adding the pivotal agent pj generates the lowest possible risk premium paid by each

member of the coalition S�j :

12Let us remark that the CARA speci�cation is not crucial for the results obtained. If we assume an increasing

and concave utility function u(c) and in�nitesimal shocks, then using the Arrow-Pratt approximation would yield the

following risk premium for any individual i in group S

�i(S) = �
u00 (wi)

u0 (wi)

P
k2S �

2
k

jSj2
:

Hence, the purpose for each individual remains to obtain the lowest ratio
P
k2S �

2
k

jSj2 . However, when it is not assumed

that u(:) is CARA our mutual insurance rule is no more optimal.
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Let us remark that the de�nition of a pivotal agent depends neither on the level of the variance

nor on the degree of risk aversion. The conditions (6) and (7) can be rewritten as:

1 � [2nj � 1]
(nj � 1)2

X
k2Sjnfpjg

pj�1Y
z=k+1

1

�z
(8)

and

1 >
[2nj + 1]

n2j

X
k2Sj

pjY
z=k+1

1

�z
: (9)

What matters in the formation of a coalition, is the heterogeneity of the exposure to risk measured

by risk ratios. Consider the less risky agent, characterized by �21: If he forms a coalition, it is

necessarily with a more risky agent. The best choice for him is agent 2 who adds the lowest increase

in the common risk premium:

�(f1; 2g) = �

8
(�21 + �

2
2) =

��21
8
(1 + �2)

< �(f1; ig) = �

8
(�21 + �

2
i ) =

��21
8
(1 +

i
�
k=2

�k);8i > 2:

This formula makes clear that agent 1 prefers to form a coalition with agent 2 than with any other

agent in society, because he is relatively closer to him in terms of risk. Eventually, what matters

for agent 1, is the sequence of risk ratios, that is the individual variances relative to his own. This

reasoning can then be generalized to any n-agent coalition so as to obtain the core partition.

Given the consecutivity property of the core partition, the coalition S�j is fully de�ned by the

two agents whose indices are pj�1 + 1 and pj : In other words, the core partition is de�ned by the

set of pivotal agents. Then we are able to o¤er the following:

Proposition 2 The core partition is characterized by a set of J pivotal agents indexed by pj sat-

isfying (6) - (7) for j = 1; :::; J � 1 and �2pJ = �2N :

Remark that the last coalition is peculiar. Its pivotal agent is per force agent N who satis�es

condition (6) and not condition (7). We refer to this ultimate coalition as the �residual�risk-sharing

coalition.

Finally, Proposition 2 highlights that, depending on the risk-ratio schedule, the mutual insurance

rule may lead to various risk-sharing groups. We could obtain the grand coalition belonging to the

core if the risk heterogeneity was su¢ ciently small.13

13Again, our result relies on the insurance rule we adopt. Let us stress that if we take the insurance rule that gives

individual i the following level of optimal consumption:

ci = wi +

P
k2S "k

n
+ � +

�

2n
(

P
k2S �

2
k

n
� �2i )
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3.2 Particular Risk-Ratio Schedules.

We have just emphasized the importance of the risk-ratio schedule � characterizing a society I in

the endogenous determination of the core partition of this society. In this subsection, we explore

the link between patterns of the risk-ratio schedule and the characteristics of the core partition.

This allows us to better understand how heterogeneity a¤ects the way individuals congregate so as

to share risk. Formally, we want to assess the impact of � on the series of pivotal agents, i.e. on

the number and size of risk-sharing coalitions.

We restrict the analysis to risk-ratio schedules with simple monotonicity properties: either the

sequence of �i increases, decreases or remains constant. We then o¤er the following

Proposition 3 If the risk-ratio schedule � = f�2; �3; :::; �Ng is such that:

i/ �i = �; 8i = 2; ::N then n�j = n;8j = 1; :::; J � 1.

ii/ �i � �i+1; 8i = 2; ::N then n�j � n�j+1;8j = 1; :::; J � 1.

iii/ �i � �i+1; 8i = 2; ::N then n�j � n�j+1;8j = 1; :::; J � 1.

Proof. See Appendix.

This proposition makes clear that risk heterogeneity a¤ects the core partition, that is the way

agents collectively cope with risk. To understand this proposition, each individual makes his deci-

sion about membership with several principles in mind that we have previously uncovered. First,

he prefers joining the least risky coalition; second, he prefers being joined by the less risky agents

among those who are more risky than himself; third, when selecting (approving the admission of)

members in his coalition, he cares about the risk ratios. Consecutivity, the ordering of coalition-risk

premia, and the impact of risk ratios in determining the pivotal agent of any coalition are the key

elements for understanding how a core partition relates to the risk ratio schedule.

First, consider that the risk ratios are constant and equal to �. From (8) and (9), we see

that inequalities determining the pivotal agent are identical for any club Sj : It turns out that

coalitions in the core partition have the same size. In fact, it amounts to say that with constant risk

then the grand coalition belongs to the core of the coalition formation game for any risk-ratio schedule (see Theorem

2 of Baton and Lemaire, 1981). This rule corresponds to Pareto weights equal to ln�i = �wi � �2

2n
�2i (see Equation

(22) in Appendix 7.4). Indeed, this rule yields the following certainty-equivalent income

!i (S) = wi �
�

2

�2i
n
� �

2
�2�

which monotonously decreases with the size of the risk-sharing group. Hence, every individual i wishes to form a

club encompassing the whole society.
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ratios individuals, while deciding to form a risk-sharing group, individuals face the same trade-o¤

whatever the level of their exposure to risk.

Second, consider that the risk ratios are increasing with the rank of individuals. The condition

determining p2 implies higher values of the risk ratios than the one determining p1 (remember that

the absolute values of variances of the �rst agents do not matter). Hence, pondering the bene�t

of increasing size and the cost of bearing risk with agents further in the distribution of risk, the

size of S�2 turns out to be smaller than the size of S
�
1 . Repeating the argument, we �nd that the

succeeding club sizes decrease.

Third, the case where the risk ratios are decreasing with the rank of individuals is easily under-

stood by using a similar argument. Now the cost of forming the second risk-sharing group is lower

yielding its size to be higher than for the �rst group.

3.3 Risk-sharing Partitions and Aggregate Risk Premium.

We aim to study the impact of an increase in risk, on the pattern of risk-sharing coalitions and on

the resource cost of dealing with risk. We �rst de�ne the aggregate risk premium.

De�nition 5 The aggregate risk premium associated with the core partition P is de�ned as:

�(P) = 1

N

NX
i=1

�i =
1

N

0@ JX
j=1

nj�(Sj)

1A
=
1

N

�

2

0@ JX
j=1

1

nj

X
k2Sj

�2k

1A+ �

2
�2� : (10)

The aggregate risk premium is an indicator of the willingness to pay for risk coping, at the

society level. From equation (10), it clearly depends on the core partition.

We should expect that an increase in individual risk should lead to a higher aggregate risk

premium. This is obviously true if the coalition formation is taken as given. However this is not

necessarily true when agents form their risk-sharing coalitions. It may happen that the change in

the whole core partition leads to di¤erent risk-sharing arrangements, the outcome of which is to

decrease the average risk premium.

This counter-intuitive result is proven in the following

Proposition 4 Consider two societies I and I0 with "i; respectively "0i; the idiosyncratic risk of

any individual i in I; respectively I0: Assuming that "i SS-Dominates "0i for every i = 1; :::; N , then

society I may be characterized by a higher aggregate risk premium than I0 :

�(P 0) < �(P) (11)

13



where P (resp. P 0) is the core partition associated with I (I0).

Proof. See Appendix.

Proposition 4 highlights the fact that if endogenous formation of risk-sharing groups is taken

into consideration than we cannot claim that all individuals pay a higher risk premium in a more

risky society. We consider the case where society I0 is associated with a lower number of risk-sharing

coalitions than I, even though agents face more risk (higher idiosyncratic variances) in I0 than in I,

because as stressed in Proposition 3, this society is characterized by less risk heterogeneity. Hence,

in society I0, risk may be allocated in larger coalitions. In other words, in society I0, individuals have

the possibility to mutualize risk on a larger scale. This leads that the sum of these risk premia may

be lower in the more risky society and some individuals will pay lower risk premium and consume

more in this society.

4 Empirical implications of Risk-Sharing Groups Formation.

In this section, we link the evidence of partial risk sharing obtained by most empirical studies to

the presence of risk-sharing groups. Partial risk sharing corresponds to the simultaneous rejection

of perfect risk sharing and autarky (cf. Dercon and Krishnan, 2003).

Most empirical studies test for e¢ cient risk-sharing by considering that the conditional expec-

tation of individual consumption equals:

E(citj
Y It
N
; yit) = �i + �i

Y It
N
+ �iyit (12)

with Y It �
NP
i=1
yit, and where �i and �i obtain using properties of conditional expectations of

multivariate normal distributions (Ramanathan, 1993):

�i =
cov

�
Y It
N ; cit

�
var (yit)� cov (yit; cit) cov

�
Y It
N ; yit

�
var

�
Y It
N

�
var (yit)�

h
cov

�
Y It
N ; yit

�i2 (13a)

�i =
cov (yit; cit) var

�
Y It
N

�
� cov

�
Y It
N ; cit

�
cov

�
Y It
N ; yit

�
var (yit) var

�
Y It
N

�
�
h
cov

�
Y It
N ; yit

�i2 : (13b)

Equation (12) builds on the well known result that with CARA utility function, individual

consumption at the optimum is a linear function of both global resources and individual income

(see for instance Tonwsend, 1994).14

Denoting by �I �
P
i2I �i
N and �I �

P
i2I �i
N , we then o¤er the following

14See Appendix 7.4 for a formal presentation of the maximization program for delivering Pareto-optimal allocations.

14



Lemma 1 Given a partition of the society, if we assume that individuals share risk optimally within

coalitions, whatever the Pareto-oprimal risk-sharing rule, we get

lim
N�!+1

�I = 1�
1

nJ

lim
N�!+1

�I =
1

nJ

with nJ the average size of risk-sharing groups.

Proof. See Appendix.

It turns out that risk-sharing group membership is a crucial determinant of the value of �i

and �i. We immediately see that if the grand coalition is formed then nJ = N implying that

lim
N�!+1

�I = 1 and lim
N�!+1

�I = 0: While if individuals decide to pool risk in smaller groups than

the whole society I then nJ < N implying that lim
N�!+1

�I 6= 1 and lim
N�!+1

�I 6= 0. Most empirical
studies assume that the relevant unit to test for e¢ cient risk sharing is the grand coalition. This

assumption may be inaccurate and may explain why the null hypothesis �I = 0 is rejected.

We will thus consider that �I measures the extent of risk sharing in this society. A higher �I

means that an individual on average bene�ts from lower risk sharing. This is congruent with the

interpretation of the estimated value of � as a measure of the extent of risk sharing (see for instance

Jalan and Ravallion, 1999, and Suri, 2009).

Characterizing the relationship between heterogeneity in risk exposure and the size of risk-

sharing coalitions, our setup helps to understand the impact of heterogeneity on the extent of risk

sharing. Lemma 1 allows us to prove the following

Proposition 5 For two societies I and I0, I being characterized by � = f�2; �3; :::; �Ng and I0

being characterized by �0 = f�02; �03; :::; �0Ng; if �i < �0i , 8i = 2; :::; N , then the extent of risk sharing
is higher in society I than in society I0.

Proof. See Appendix.

This proposition highlights the crucial impact of risk heterogeneity on the allocation of risk in

any society. In the more heterogenous society I0, individuals share risk in smaller coalitions, thus

diminishing the extent of risk sharing.

Let us provide an intuition for the proof of Proposition 5 by taking the special case where

�i = �i+1 = �; �0i = �0i+1 = �0 and � < �0 whatever i = 2; :::; N . Consider agent 1 in society

I. Taking into account that the decision for membership only depends on the risk ratios, and

pondering the trade-o¤ between the bene�t of size and the cost of higher marginal relative risk,

agent 1 prefers being included in a (weakly) larger risk-sharing coalition in society I than in society

15



I0. From Proposition 3, the agent following the �rst pivotal agent faces the same trade-o¤ as agent

1. Hence the second club is of the same size than the �rst club, and consequently is of a larger size

in society I than in society I0. Repeating the argument, we �nd that the number of non-residual

clubs is (weakly) reduced in the core partition of society I compared to the core partition of society

I0. The case of decreasing and increasing �is can similarly be dealt with.

Propositions 4 and 5 highlight that both aggregate risk premium and the extent of risk sharing

must both be considered for the assessment of risk sharing when risk-sharing coalitions are endoge-

nous. Take two societies I and I0 with any "i SS-Dominating "0i and the risk-ratio schedule in I

being characterized by higher risk ratios than the one in I0 such that the aggregate risk premium

and the extent of risk sharing may both be higher in society I0. A larger extent of risk sharing

is commonly considered as desirable when it is assumed that agents are risk averse. However, a

higher aggregate risk premium is viewed as worse insurance outcome as it would lead to a lower

certainty-equivalent income. Hence, reasoning on the variation of the aggregate risk premium or

the extent of risk sharing separately would draw contradictory conclusions about the impact of an

increase in risk on risk sharing performances, at the society level.

5 Heterogenous Risk Aversion.

Recent advances in the empirical literature support the evidence of heterogenous risk preferences

(see for instance Ogaki and Zhang, 2001, Mazzocco, 2004, Dubois, 2006, Mazzocco and Saini, 2009,

Chiappori et alii, 2011). In this section, we study the impact of heterogenous risk aversion on the

formation of risk-sharing groups and show how the properties of the partition previously found

remain valid.

The model we study is similar to the above setting with the two following modi�cations: First,

individuals face the same exposure to risk �2" ; second, individuals di¤er with respect to risk aversion.

Without loss of generality, we index individuals as follows: for i and i0 = 1; ::; N with i > i0 then
1
�i
> 1

�i0
. The inverse of risk aversion 1

� being de�ned as risk tolerance, a lower indexed individual

is characterized by a lower risk tolerance.

Considering the consumption function given by equation (1), under these assumptions, the

indirect utility function for individual i in Sj obtains:

Vi(Sj) = �
1

�i
e
��i[wi� 1

2
1
�i

n2j

(
P
k2S

1
�k

)2

�
�2�+

�2"
nj

�
]:

We denote by �i(Sj) the risk premium evaluated by individual i when belonging to Sj :
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�i(Sj) =
�i
2

0B@ 1
�i

1
nj

P
z2Sj

1
�z

1CA
2�

�2� +
�2"
nj

�
: (14)

The risk premium paid by agent i in her risk-sharing group expresses the trade-o¤ on which the

partition of society is based. Accepting a new member in a group pools risk among more individuals

and therefore reduces the risk associated with the group (which is equal to �2� +
�2"
nj
in equation 14).

However accepting a new member a¤ects the coalition average risk tolerance: if this new member is

less tolerant to risk than the average agent in the group, it will decrease the average risk tolerance

and thus increase the transfer in order to be insured against risk. This is captured by the ratio
1

1
nj

P
z2Sj

1
�z

in equation (14).

De�ning the risk tolerance ratio between agent i and agent i � 1 as �i = 1=�i
1=�i�1

for any i =

2; :::; N , the following proposition characterizes the core partition:

Proposition 6 A core partition P� =
n
S�1 ; :::; S

�
j ; :::; S

�
J

o
exists and is characterized as follows:

i/ It is unique if

8z = 2; :::; N � 1; �z+1 � �z
�z+1 � 1

� � 1

(z + 1)
: (15)

ii/ It is consecutive, that is, if i and ei both belong to S�j then 8i0; i > i0 > ei; i0 2 S�j .
iii/ For any two individuals i 2 S�j and i0 2 S�j0 such that 1

�i
> 1

�i0
, then �i(S�j ) 5 �i0(S�j0):

Proof. See Appendix.

This proposition is quite similar to Proposition 1. The su¢ cient condition for uniqueness

parallels equation (5). Consecutivity is a characteristic of the core partition: two individuals are

more likely to congregate the closer they are in terms of risk tolerance. Finally, the less risk tolerant

an individual, the higher the risk premium that this individual is ready to pay. In other words, we

can index coalitions according to the ordering of risk premia.

Notice however that the rationale behind the formation of coalitions and therefore of the core

partition is di¤erent than in the case of heterogeneity with respect to risk. In the case of risk aversion

heterogeneity, each agent wants to join a coalition formed by the most risk tolerant agents: This

decreases her risk premium. But the most risk tolerant agents deny membership to agents with

su¢ ciently high risk aversion who would demand a too high transfer. Hence the formation of the

core partition is obtained by clustering the most risk tolerant agents into the �rst coalition, and

proceeding sequentially for the other coalitions.
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The core partition can be characterized by a set of pivotal agents de�ned as follows:15

X
k2Sjnfpjg

1

�k

0B@�1 + 1

(nj � 1)

vuuutn2j

�
�2� +

�2"
nj

�
�
�2� +

�2"
nj�1

�
1CA � 1

�pj

and X
k2Sj

1

�k

0B@�1 + 1

nj

vuuut(nj + 1)2
�
�2� +

�2"
nj+1

�
�
�2� +

�2"
nj

�
1CA >

1

�pj+1
:

As inequalities de�ning pivotal agents are homogenous of degree 0 with respect to 1
�i
; we also

derive a relationship between the heterogeneity of risk tolerance and coalition�s size:

Proposition 7 If the risk-tolerance ratio � = f�2; �3; :::; �Ng is such that:

i) �i = �; 8i = 2; :::; N; then n�j = n;8j = 1; :::; J � 1.

ii) �i � �i+1; 8i = 2; :::; N; then n�j � n�j+1;8j = 1; :::; J � 1.

iii) �i � �i+1; 8i = 2; :::; N; then n�j � n�j+1;8j = 1; :::; J � 1.

Proof. See Appendix.

This proposition is similar to Proposition 3 and can be explained along the same line. What

matters for the shaping of the partition is the heterogeneity with respect to risk aversion, captured

by the risk tolerance ratios, which plays the same role as the risk ratios.16

In brief, our various propositions are robust to the nature of heterogeneity. This heterogeneity

may apply to the utility functions of agents or to the stochastic environment they face, yet it will

trigger identical behaviors which will lead agents to sort themselves into distinct risk-sharing groups

(even though it may happen that the grand coalition forms). Importantly, the segmentation of

society into di¤erent risk-sharing coalitions depend not on the levels of idiosyncratic characteristics

such as the exposures to risk or risk aversion coe¢ cients, but on heterogeneity as expressed by the

risk ratios or the risk-tolerance ratios.

15Let us consider 
(�2�) =

0@�1 + 1
nj

vuut(nj + 1)2
�
�2�+

�2"
nj+1

�
�
�2�+

�2"
nj

�
1A : It is easy to check that it monotonously increases

with �2� ; 8nj � 1 and 0 < 
(0) =
�
�1 + 1

nj

p
(nj + 1)nj

�
< 1 and lim�2��!+1 
(�

2
�) =

1
nj
:

16 It is irrelevant to search for a proposition equivalent to Proposition 4. Comparing aggregate risk premia obtained

in societies which are not similar in risk aversion and thus value di¤erently the protection with respect to risk has no

economic meaning.
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6 Conclusion.

Non-�nancial risk-sharing arrangements are widely used in developing economies. In the absence

of proper and well-functioning �nancial markets, agents rely on informal insurance schemes, often

based on a social or geographical (the �village�) proximity. Hence it is legitimate to ask how are

designed the risk-sharing mechanisms in a society and what are their properties and consequences.

This justi�es an inquiry into the endogenous formation of risk-sharing coalitions. Considering

a society without �nancial markets and relying on a particular insurance rule, we study the en-

dogenous formation of risk-sharing coalitions. Agents can form any possible group but commit to

remaining in their chosen group whatever the realization of idiosyncratic shocks.

Heterogeneities in the variances of the idiosyncratic shocks, and in risk aversion are successively

studied. First we obtain a characterization of the core partition of society with respect to risk,

depending on the di¤erentiated idiosyncratic risks born by individuals. It is unique (under some

mild assumption), and consecutive: a coalition integrates agents of relatively similar risks. There

is perfect risk-sharing within a coalition. However, there is no full insurance across society. In other

words, the amplitude of risk sharing cannot be studied without precisely taking into account the

memberships of risk-sharing groups and their di¤erences.

Turning to the discussion of the role of risk heterogeneity on the segmentation of society and

focusing on three special cases, we characterize the relationship between the characteristics (i.e.

number, sizes and memberships) of risk-sharing coalitions and the distribution of risk across society.

When the segmentation in risk-sharing coalitions of societies di¤ering in their risk heterogeneity

are compared, we prove that the extent of risk sharing assimilated to the average size of coalitions

decreases with this heterogeneity. The link between partial risk sharing and risk heterogeneity

comes from the partition of society into di¤erent risk-sharing coalitions shaped by risk heterogeneity.

Finally a more risky society (in the sense of second-order stochastic dominance) may devote less

resources to risk sharing than a less risky one as it may be less heterogenous, thus less segmented,

and therefore better able to pool individual risks. This illustrates a tension between the levels of

individual variances and their ratios (which express risk heterogeneity). When heterogeneity with

respect to risk aversion is considered, similar propositions obtain.

The present research proves how coalition theory tools can be applied to study the functioning

of an economy in the presence of uncertainty when agents are risk-averse. It can be extended along

several lines, where these tools are also of potential interest.

First, reversing the present logic which takes as given the risk-sharing rule and then look for

the endogenous membership of risk-sharing groups, it would be valuable to address the issue of
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recontracting the risk-sharing rule once risk-sharing groups are formed.

Second, the assumption of full commitment could be relaxed so as to assess the impact of

defection on the number and the size of risk-sharing coalitions forming the core partition.

Third, our paper shows that sorting individuals into risk-sharing coalitions a¤ects the extent

of risk sharing over the whole society. This suggests to empirically search for boundaries of groups

and their impacts on the relationship between society�s heterogeneity and the degree of partial risk

sharing.
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7 Appendix.

7.1 Proof of Proposition 1.

Existence. Given the value of Vi (Sj) ; if for the two groups Sj and Sj0 , we have:

Vi (Sj) � Vi
�
Sj0
�
() �2

2
�
n2j

� X
k2Sj

�2k �
�2

2
�
n2j0
� X
k2Sj0

�2k

then we have:

Vi0 (Sj) � Vi0
�
Sj0
�
;8i0 2 I:

This implies that the common ranking property is satis�ed, that is:

8i; k 2 I; Vi (Sj) � Vi
�
Sj0
�
, Vk (Sj) � Vk

�
Sj0
�
:

According to Banerjee et al. (2001), the common ranking property implies that a core partition

exists.

Proof of (ii): Consecutivity.

By contradiction, let us consider a core-partition P� characterized by some non consecutive
groups, that is, there exist individuals i;ei 2 S�j and i0 2 S�j0 with i < i0 < ei:

Suppose �rst that �(S�j ) � �(S�j0). As i < i0 < ei () �2i < �2i0 < �2ei , we have �(S�j0) >
�((S�j0nfi0g) [ fig), which leads to

8z 2 (S�j0nfi0g) [ fig; Vz((S�j0nfi0g) [ fig) > Vz(P�):

Second, assume that �(S�j0) � �(S�j ). We have �(S
�
j ) > �((S�j nfeig) [ fi0g), which leads to

8z 2 (S�j nfeig) [ fi0g; Vz((S�j nfeig) [ fi0g) > Vz(P�):

Hence a contradiction with the fact that P� is assumed to be a core-partition.
Proof of (i): Uniqueness.

Let us de�ne pj the most risky agent of the consecutive group Sjnfpjg with size enj = nj � 1
satisfying the two following inequalities:

�2pj � [2enj + 1] X
k2Sjnfpjg

�2ken2j
and

�2pj+1 > [2enj + 3]X
k2Sj

�2k
(enj + 1)2 :
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Let us consider the consecutive group Sj whose lowest-individual-risk agent is i. Given the de�nition

of the most risky agent, we can introduce the two following functions: �(en) = en
2en+1 and �(i; en) =

1en
i+en�1P
k=i

�2k

�2i+n
with en = 1; :::; N � i+ 1. Let us denote by en�(i) + 1 the size of group Sj such that:

�(en�(i)) � �(i; en�(i))
and

�(en�(i) + 1) > �(i; en�(i) + 1):
It is easy to check that �(en) is an increasing function of en and �(1) = 1

3 : Given �(i; 1) = 1 > �(1);

if �(i; en) is decreasing with respect to en whatever i 2 I and en � N � i, then en�(i) is unique as
�(en) � �(i; en) for en � en�(i) and �(en) > �(i; en) for en > en�(i):

The function �(i; en(i)) is decreasing if and only if:
��(i; en) � �(i; en(i) + 1)��(i; en(i)) = 1en+ 1

�2i+en + i+en�1P
k=i

�2k

�2i+en+1 � 1en
i+en�1P
k=i

�2k

�2i+en < 0()

 (i; en) = en�2i+en �
 
(en+ 1)�2i+en+1

�2i+en � en! i+en�1X
k=i

�2k

!
< 0:

Let us consider the function  (i; en). It is negative for all i, en � N � i if

 (i; 1) = �2i+1 �
�
2
�2i+2
�2i+1

� 1
��

�2i
�
� 0 and � (i; en) �  (i; en+ 1)�  (i; en) � 0:

De�ning �i+1 =
�2i+1
�2i

; the inequality  (i; 1) � 0 is equivalent to�
�2i+1��2i
�2i

�
�
�
�2i+2��2i+1
�2i+1

�
�
�2i+2��2i+1
�2i+1

� =
�i+1 � �i+2
�i+2 � 1

� 1: (16)

Moreover, 8en � 1, � (i; en) � 0 is equivalent to
� (i; en) = ((en+ 1)�i+en+1 � (en+ 2)�i+en+2 + 1)(�2i+en +

 
i+en�1X
k=i

�2k

!
) � 0,

�i+en+1 � �i+en+2
�i+en+2 � 1 (en+ 1) � 1:

De�ning z � i+ en+ 1, we can rewrite this inequality as follows:
�z � �z+1
�z+1 � 1

(z + 1)(
z � i
z + 1

) � 1:

As 0 � (z�i)
(z+1) � 1; we deduce that if for all z = 3; :::; N�1;

�z��z+1
�z+1�1 (z+1) � 1; then4 (i; en) � 0:

25



Given equation (16), we deduce that if for all z = 2; :::; N � 1; �z��z+1�z+1�1 (z + 1) � 1 then

4 (i; en) � 0 and  (i; 1) � 0; 8i = 1; :::; N:
Hence, when for all z = 2; :::; N � 1; �z��z+1�z+1�1 (z + 1) � 1; we deduce that there is a unique size

nj for the club Sj :

Proof of (iii): Risk premium ordering.

Consider the �rst group S�1 . Let us de�ne the group $j =
n
1; ::::; n�j

o
which is consecutive,

comprised of the lowest-individual-risk agents and has the same size as group S�j . From the de-

�nition of the core-partition, we know that, 8$ � I; 8z 2 S�1 and $, Vz(S
�
1) � Vz($) and in

particular 8z 2 S�1 and $j , 8j = 2; :::; J , Vz(S�1) > Vz($j ) which means that 8$j ; �(S�1) < �($j ):

Moreover, given the consecutivity property, it is easy to show that �($j ) < �(S�j ); 8j > 1: Hence,
�(S�1) < �(S�j ): Considering the subset In(S�1 [S�2 [ :::[S�j ), the same argument can be applied for
S�j+1 leading to the result �(S

�
1) < �(S�2) < �(S�3) < ::: < �(S�j ) < ::: < �(S�J�1):

7.2 Proof of Proposition 3.

Let us �rst denote by Sc(i) any consecutive group whose less risky individual is i. We will denote

by bn(i) the size of Sc(i) such that bn(i) = argmaxVi(Sc(i)) in the subset Inf1; 2; :::; i�1g; for a risk
ratio schedule �: Hence, bn(i) satis�es inequalities characterizing a pivotal agent:

�(bn(i)� 1) � �(i; bn(i)� 1) (17)

and

�(bn(i)) > �(i; bn(i)): (18)

From Proof of Proposition 1, we know that �(n) is an increasing function of n and, under some

condition, �(i; n) decreases with respect to n. We can rewrite �(i; n) as follows:

�(i; n) =
1

n

i+n�1X
v=i

i+nY
z=v+1

1

�z
:

�(i; n) is a function of i such that:

(i) When �z = �; 8z = 2; :::; N; then �(i; n) = �(i0; n) 8i; i0:
(ii) When �z � �z+1; 8z = 2; :::; N; then �(i; n) � �(i0; n) for i < i0:

(iii) When �z � �z+1; 8z = 2; :::; N; then �(i; n) � �(i0; n) for i < i0:

Hence (i), (ii), (iii) and inequalities (17) and (18) lead to Proposition 3.

7.3 Proof of Proposition 4.

Let us consider the two following societies. In society I0, there are N individuals characterized with

�02i = 1. Hence, P 0 = fI 0g. In society I, n1 individuals are characterized with �21 and n2 individuals
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are characterized with �22 such that 1 > �22 > �21. Let us choose �
2
1 and �

2
2 such that P = fS�1 ; S�2g

with S�1 (respectively S
�
2) comprised of the n1 (respectively n2) individuals with �

2
1 (respectively

�22). Hence, �
2
1, �

2
2; n1; n2 and x are such that

n1�
2
1 + x�

2
2

(n1 + x)2
>
n1�

2
1

(n1)2
for all x 2 f1; :::; n2g

which is equivalent to

�22 > �21
2n1 + x

n1
:

As the RHS is an increasing function of x, a su¢ cient condition for this inequality to hold is

�22 > �21
2n1 + n2

n1
:

Thus, given both core partitions, we deduce that

�(P) = �

2

1

N

�
n1
n1�

2
1

(n1)2
+ n2

n2�
2
2

(n2)2

�
+
�

2
�2� and �(P 0) =

�

2

1

N
+
�

2
�2� :

In order to have �(P) > �(P 0); �21 and �22 must be such that:

�21 + �
2
2 > 1:

Clearly there exist �21 and �
2
2 that satisfy the following inequalities:

1 > �21; 1 > �22; �
2
1 + �

2
2 > 1; �

2
2 > �21

2n1 + n2
n1

:

For example, take �21 <
n1

3n1+n2
which satis�es 1 > �21: As �

2
1 > 0; we have 1 > 1� �21: Notice that

�21 <
n1

3n1+n2
is equivalent to 1� �21 > �21

2n1+n2
n1

. So that for any �22 such that 1 > �22 > 1� �21, the
four inequalities are satis�ed.

7.4 Proof of Lemma 1.

We �rst present as a benchmark the case of risk-sharing within a given society when resources are

allocated by a benevolent planner. Let us mention that we assume that individuals di¤er with

respect to exposure to risk and also risk aversion.

Let the state of nature be denoted by �It = (�t; "1t; : : : ; "jt; : : : "Nt): We will denote by Y It (�
I
t)

the aggregate level of resources at date t:

Y It (�
I
t) =

NX
i=1

wit +
NX
i=1

"it +N�t

Following the seminal paper by Townsend (1994), the planner�s program can be expressed as

follows:

max
fcitg

U =
NX
i=1

�i

 
�E0

"
1

�i

TX
t=1

�t�1e��icit

#!
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subject to the following feasibility constraint at each date t:

cIt(�
I
t) �

NX
i=1

cit � Y It (�
I
t)

where �i; i = 1; :::; N; denote the non-negative Pareto weights attached on the consumers. It turns

out that Pareto-optimal consumptions can be written as follows17:

cit =
1

�i

"
ln�i �

P
k2I

ln�k
�kP

k2I
1
�k

#
+

1
�i
NP

k2I
1
�k

Y I(�It)

N
; 8i 2 I: (19)

Given (19) the conditional expectation of individual consumption is used by econometricians

when testing for the perfect risk sharing hypothesis:

E(citj
Y It (�

I
t)

N
; yit) = �i + �i

Y It
N
+ �iyit (20)

where the formulas of �i and �i are obtained by using properties of conditional expectations of

multivariate normal distributions (Ramanathan, 1993):

�i =
cov

�
Y It
N ; cit

�
var (yit)� cov (yit; cit) cov

�
Y It
N ; yit

�
var

�
Y It
N

�
var (yit)�

h
cov

�
Y It
N ; yit

�i2 (21a)

�i =
cov (yit; cit) var

�
Y It
N

�
� cov

�
Y It
N ; cit

�
cov

�
Y It
N ; yit

�
var (yit) var

�
Y It
N

�
�
h
cov

�
Y It
N ; yit

�i2 : (21b)

Given (19), some straightforward computations lead to the following

�i =
1
�iP
k2I

1
�k

(N�2� +
P
m2I �

2
m

N )
�
�2� + �

2
i

�
�
�
N�2� + �

2
i

� �
�2� +

�2i
N

�
�
�2� + �

2
i

� �
�2� +

P
m2I �

2
m

N2

�
�
�
�2� +

�2i
N

�2
�i =

1
�iP
k2I

1
�k

�
N�2� + �

2
i

� �
�2� +

P
m2I �

2
m

N2

�
� (N�2� +

P
m2I �

2
m

N )
�
�2� +

�2i
N

�
�
�2� + �

2
i

� �
�2� +

P
m2I �

2
m

N2

�
�
�
�2� +

�2i
N

�2 :

Hence,

�i =
1
�iP
k2I

1
�k

N

and

�i = 0:

17 If we considered a production sector and leisure choice, formulas of Pareto-optimal consumptions would not be

a¤ected if separable utility functions are assumed (see Townsend, 1994).
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Second, let us now assume that optimal risk sharing takes place in subset S � I; with n �
card(S) < N: It turns out that Pareto-optimal consumptions can now be written as follows

cit =
1

�i

"
ln�i �

P
k2S

ln�k
�kP

k2S
1
�k

#
+

1
�i
nP

k2S
1
�k

P
k2S(wkt + "kt + �t)

n
; for i 2 S: (22)

If we still consider (20) and use the latter expression of cit to compute (21a) and (21b), it turns

out that coe¢ cients �i and �i are equal to:

�i =
1
�iP
k2S

1
�k

(n�2� +
P
k2S �

2
k

N )
�
�2� + �

2
i

�
�
�
n�2� + �

2
i

� �
�2� +

�2i
N

�
�
�2� + �

2
i

� �
�2� +

P
m2I �

2
m

N2

�
�
�
�2� +

�2i
N

�2 (23)

�i =
1
�iP
k2S

1
�k

�
n�2� + �

2
i

� �
�2� +

P
m2I �

2
m

N2

�
� (n�2� +

P
k2S �

2
k

N )
�
�2� +

�2i
N

�
�
�2� + �

2
i

� �
�2� +

P
m2I �

2
m

N2

�
�
�
�2� +

�2i
N

�2 (24)

Dividing by (�2i )
2 both the numerator and denominator in (23) and (24) leads to:

�i =
1
�iP
k2S

1
�k

(n�
2
�

�2i
+

P
k2S �

2
k

�2iN
)
�
�2�
�2i
+ 1
�
�
�
n�

2
�

�2i
+ 1
��

�2�
�2i
+ 1

N

�
�
�2�
�2i
+ 1
��

�2�
�2i
+

P
m2I �

2
m

�2iN
2

�
�
�
�2�
�2i
+ 1

N

�2 (25)

�i =
1
�iP
k2S

1
�k

�
n�

2
�

�2i
+ 1
��

�2�
�2i
+

P
m2I �

2
m

�2iN
2

�
� (n�

2
�

�2i
+

P
k2Sj

�2k

�2iN
)
�
�2�
�2i
+ 1

N

�
�
�2�
�2i
+ 1
��

�2�
�2i
+

P
m2I �

2
m

�2iN
2

�
�
�
�2�
�2i
+ 1

N

�2 : (26)

If we assume that limN!1
�2N
�21

<1; this implies that

lim
N!1

�2N
N�21

= 0:

Further, as
P
m2I �

2
m

N2�2i
� �2N

�21N
8i = 1; :::; N; we thus easily deduce that when limN!1

�2N
�21

<1; then

lim
N!1

P
m2I �

2
m

N2�2i
= 0;8i = 1; :::; N:

If N tends to in�nity, the following equalities obtain:

�i '
1
�iP
k2S

1
�k

(n�
2
�

�2i
+

P
k2S �

2
k

�2iN
)
�
�2�
�2i
+ 1
�
�
�
n�

2
�

�2i
+ 1
��

�2�
�2i

�
�
�2�
�2i
+ 1
��

�2�
�2i

�
�
�
�2�
�2i

�2 (27)

�i '
1
�iP
k2S

1
�k

�
n�

2
�

�2i
+ 1
��

�2�
�2i

�
� (n�

2
�

�2i
+

P
k2S �

2
k

�2iN
)
�
�2�
�2i

�
�
�2�
�2i
+ 1
��

�2�
�2i

�
�
�
�2�
�2i

�2 : (28)
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As limN!1
�2N
�21

< 1 implying that limN!1
P
m2I �

2
m

N2�2i
= 0 and limN!1

P
k2S �

2
k

�2iNn
= 0 8i =

1; :::; N; we get:

�i '
1
�iP
k2S

1
�k

(n� 1) (29)

�i '
1
�iP
k2S

1
�k

: (30)

If we assume that each individual belongs to one risk-sharing coalition only, and society I is

organized into J risk-sharing coalitions, denoting by �I �
P
i2I �i
N and �I �

P
i2I �i
N we immediately

get:

lim
N!+1

�I = 1�
1

nJ
(31)

and

lim
N!+1

�I =
1

nJ
(32)

with nJ � N
J :

7.5 Proof of Proposition 5.

We will denote by Sc(i) the consecutive club whose lowest risky agent is individual i: Let us denote

by bn( ij�) the size of Sc(i) such that bn( ij�) = argmaxVi(Sc(i)); for a risk ratio schedule �:
We �rst o¤er the following Lemma

Lemma 2 For two societies I and I0 characterized respectively by � = f�2; �3; :::; �Ng and �0 =
f�02; �03; :::; �0Ng with �z < �0z for z = 2; :::; N; we have bn( ij�) � bn( ij�0):
Proof. Let us denote by �(

�!
� i;n) � �(i; n) = 1

n

i+n�1P
v=i

i+nQ
z=v+1

1
�z
with

�!
� i;n = (�i+1; �i+2; :::; �i+n�1):

Hence for two vectors
�!
� i;n and

�!
�0 i;n where �0z > �z; 8z = i + 1; :::; i + n � 1; we have �(�!� i;n) >

�(
�!
�0 i;n); 8i 2 I and 8n = 1; :::; N � i + 1: Given inequalities (17) and (18) and that �(

�!
� i;n) >

�(
�!
�0 i;n); it is thus easy to deduce that the optimal size of the consecutive group beginning with

agent i is larger under � = f�2; �3; :::; �Ng than under �0 = f�02; �03; :::; �0Ng: Hence, Lemma 1.

Lemma 3 Let us denote by pSc(i) the pivotal agent of any consecutive club Sc(i): For any society

I, any i0 < i we have pSc(i) > pSc(i0):

Proof. We know that �2pSc(i) satis�es

�2pSc(i) �
�
2ncj � 1

� pSc(i)�1X
k=i

�2k
(ncj � 1)2

(33)
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and

�2pSc(i)+1 >
�
2ncj + 1

� pSc(i)X
k=i

�2k
ncj
2
: (34)

Let us consider the consecutive club Sc(i0) = fi0; :::; pSc(i)+1g. By assumption on the individuals
ordering, we have

pSc(i)X
k=i

�2k
ncj

>

pSc(i)X
k=i0

�2k
n0cj

for any i0 < i:

Hence as 2n
0+1
n0 < 2n+1

n for any n0 > n; we thus have

�2pSc(i)+1 >
�
2ncj + 1

� pSc(i)X
k=i

�2k
ncj
2
>
�
2n0cj + 1

� pSc(i)X
k=i0

�2k
n0cj

2
; for any i0 < i:

We easily deduce that pSc(i) > pSc(i0) for any i0 < i:

Let us now de�ne p�j (�) the pivotal agent of club Sj in the core partition associated to �:

Let us consider individual 1. Using Lemma 2, for � = f�2; �3; :::; �Ng and �0 = f�02; �03; :::; �0Ng
with �z < �0z for z = 2; :::; N; we deduce that p�1(�) � p�1 (�

0) : Using Lemma 3, we thus deduce

that p�2(�) � p�Sc(p1(�)+1)(�) > pSc(p1(�0)+1)(�). Using again Lemma 2 allows us to say that

pSc(p1(�0)+1)(�) � p�Sc(p1(�0)+1)(�
0) � p�2(�

0): Hence p�2(�) � p�2(�
0): Iterating this reasoning until

j = J allows us to say that p�j (�) � p�j (�
0) for any j = 1; :::; J: Hence for any i = 1; :::; N we thus

deduce that the number of pivotal agents associated with � such that p�j (�) � i compared to the

number of pivotal agents associated with �0 such pj (�0) � i is higher for � than �0: This ends

proof of Proposition 5.

7.6 Proof of Proposition 6.

Existence. It is easy to see that in our case the common ranking property is also satis�ed. Hence,

a core partition exists.

Proof of (ii): Consecutivity. By contradiction, let us consider a core-partition P� charac-
terized by some non consecutive groups, that is, there exist individual i;ei 2 S�j and i

0 2 S�j0 with

i < i0 < ei:
Suppose �rst that �z(S�j ) � �z(S�j0) for any z = 1; :::; N . As i < i0 < ei () 1

�i
> 1

�i0
> 1

�ei , we
have

8z 2 (S�j0nfi0g) [ fig; Vz((S�j0nfi0g) [ fig) > Vz(P�):

Second, assume that �z(S�j0) � �z(S�j ) for any z = 1; :::; N . We have

8z 2 (S�j nfeig) [ fi0g; Vz((S�j nfeig) [ fi0g) > Vz(P�):
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Hence a contradiction with the fact that P� is assumed to be a core-partition.
Proof of (i): Uniqueness.

Knowing that core partition satis�es the consecutivity property, an individual z is accepted if

and only if

�
n2j

(
P
k2S

1
�k
)2

�
�2� +

�2"
nj

�
� � (nj + 1)

2

(
P
k2S

1
�k
+ 1

�z
)2

�
�2� +

�2"
(nj + 1)

�
which amounts to

�
�
1

�z

�2
n2j

�
�2� +

�2"
nj

�
�
�
1

�z

�
2n2j (

X
k2S

1

�k
)

�
�2� +

�2"
nj

�
+ (
X
k2S

1

�k
)2
�
(2nj + 1)�

2
� + �

2
"

�
� 0:

For positive �z; the LHS of the above inequality is positive if and only ifP
k2Sj

1
�k

1
�z
nj

0B@�nj +
vuuut(nj + 1)2

�
�2� +

�2"
(nj+1)

�
�
�2� +

�2"
nj

�
1CA � 1:

The aim is to show that the LHS of this inequality is monotonously increasing with the size of

the coalition.

First, the expression

0B@�nj +
vuuut(nj + 1)2

�
�2�+

�2"
(nj+1)

�
�
�2�+

�2"
nj

�
1CA is increasing with respect to n (we omit

j for convenience) if and only if:

2

�
n(n+ 1) +

�2"
�2�
n

� �
n+

�2"
�2�

�
+

�
2n+ 1 +

�2"
�2�

�
�2"
�2�

(35)

> 2

�
n+

�2"
�2�

�s�
n(n+ 1) +

�2"
�2�
n

� �
n(n+ 1) +

�2"
�2�
(n+ 1)

�
:

Using the fact that�
n(n+ 1) +

�2"
�2�
(n+

1

2
)

�2
>

�
n(n+ 1) +

�2"
�2�
n

� �
n(n+ 1) +

�2"
�2�
(n+ 1)

�
we can show that inequality (35) is satis�ed whatever �

2
"
�2�
and n:

Second, we o¤er a su¢ cient condition such that the ratio
P
k2Sj

1
�k

1
�z
nj

increases with respect to

the size of the coalition Sj ; i.e. P
k2Sj

1
�k
+ 1

�z
1

�z+1
(nj + 1)

�
P
k2Sj

1
�k

1
�z
nj

� 0

which is equivalent to  
nj �

1
�z+1
1
�z

(nj + 1)

!0@X
k2Sj

1

�k

1A+ nj 1
�z
� 0:
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Let us de�ne �(i; n) =
�
n�

1
�i+n+1

1
�i+n

(n+ 1)

��
i+n�1P
k=i

1
�k

�
+ n 1

�i+n
and show that �(i; n) � 0;

8n � 1:
We have �(i; 1) = (1�

1
�i+2
1

�i+1

(2))
�
1
�i

�
+ 1
�i+1

:With �i =
1=�i
1=�i�1

< 1 whatever i; �(i; 1) is positive

if and only if

1 � �i+2 � �i+1
1� �i+2

; whatever i = 1; :::; N:

Let us show that �(i; n) is monotonously increasing with respect to n; that is,

�(i; n+ 1)� �(i; n) =
 
n+ 1�

1
�i+n+2
1

�i+n+1

(n+ 2)

!�
i+n�1P
k=i

1

�k
+

1

�i+n

�

+ (n+ 1)
1

�i+n+1
�
 
n�

1
�i+n+1
1

�i+n

(n+ 1)

!�
i+n�1P
k=i

1

�k

�
� n 1

�i+n

which is equivalent to

�(i; n+ 1)� �(i; n) =
�
i+n�1P
k=i

1

�k

� 
1�

1
�i+n+2
1

�i+n+1

(n+ 2) +

1
�i+n+1
1

�i+n

(n+ 1)

!

+

 
1�

1
�i+n+2
1

�i+n+1

(n+ 2)

!
1

�i+n
+ (n+ 1)

1

�i+n+1

,

�(i; n+ 1)� �(i; n) =
�
i+n�1P
k=i

1

�k

�
(1� �i+n+2(n+ 2) + �i+n+1(n+ 1))

+ (1� �i+n+2(n+ 2))
1

�i+n
+ (n+ 1)

1

�i+n+1
:

With �i+n+1 � �i+n
�i+n+1

; we have

�(i; n+ 1)� �(i; n) =
��

i+n�1P
k=i

1

�k

�
+

1

�i+n

�
(1� �i+n+2(n+ 2) + �i+n+1(n+ 1)) :

Hence,

�(i; n+ 1)� �(i; n) � 0, 1 � (n+ 1)(�i+n+2 � �i+n+1)
(1� �i+n+2)

:

With z � i+ n+ 1; we can rewrite this inequality as follows

1 � ( z � i
z + 1

)(z + 1)
(�z+1 � �z)
(1� �z+1)

As 0 � (z�i)
(z+1) � 1; we deduce that if for all z = 3; :::; N�1;

�z��z+1
�z+1�1 (z+1) � 1; then4�(i; n) � 0:

We deduce that if for all z = 2; :::; N � 1; �z��z+1�z+1�1 (z + 1) � 1 then 4�(i; n) � 0 and �(i; 1) � 0;
8i = 1; :::; N:

Proof of (iii): The proof is identical to Proof of (iii) of Proposition 1 except with the fact

that the risk premium �(Sj) must now be replaced by �z(Sj):
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7.7 Proposition 7.

Let us de�ne e�(n) =
0B@�n+

vuuut(n+ 1)2
�
�2�+

�2"
n+1

�
�
�2�+

�2"
n

�
1CA
�1

and e�(i; n) = 1
n

i+n�1P
k=i

1
�k

1
�i+n

: We will denote by

bn(i) the size of Sc(i) such that bn(i) = argmaxVi(Sc(i)) in the subset Inf1; 2; :::; i � 1g; for a risk
ratio schedule �: Hence, bn(i) satis�es inequalities characterizing a pivotal agent:

e�(bn(i)� 1) � e�(i; bn(i)� 1) (36)

and e�(bn(i)) < e�(i; bn(i)): (37)

From Proof of Proposition 6, we deduce that e�(n) is a decreasing function of n and, under some
condition, �(i; n) increases with respect to n. We can rewrite �(i; n) as follows: 1

n

i+n�1P
k=i

1
�k

1
�i+n

�(i; n) =
1

n

i+n�1X
v=i

i+nY
z=v+1

1

�z
:

�(i; n) is a function of i such that:

(i) When �z = �; 8z = 2; :::; N; then �(i; n) = �(i0; n) 8i; i0:
(ii) When �z � �z+1; 8z = 2; :::; N; then �(i; n) � �(i0; n) for i < i0:

(iii) When �z � �z+1; 8z = 2; :::; N; then �(i; n) � �(i0; n) for i < i0:

Hence, (i), (ii), (iii) and inequalities (36) and (37) lead to Proposition 7.
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