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Abstract. We consider a situation in which members of an oligopoly

have different technologies, which allow them to produce at different

costs. Members may license their technology to other members. Using

the Aumann-Drèze modification of the Shapley value, we compute fair

prices for these licenses. We also study the problem of stability for these

“licensing coalitions.”

1. Introduction

The objective of this paper is to provide a model of coalition formation

where firms have technologies that are perfectly replicable. Hence, within

an asymmetric oligopoly, we are interested in technology transfers between

firms. The profitability of technology transfers is a two-edged sword. Faced

by a possible technology transfer between any of its competitors and result-

ing loss of its profit, a firm will try to disrupt such transfer by offering a

more attractive deal to either firm1.
Even though endogenous coalition formation is a central theme in coop-

erative game theory, much of this literature is of limited applicability to the

study of oligopoly markets since the standard definition of the character-

istic function ignores externalities among coalitions2. In these games, it is

implicitly assumed that the payoffs levels members of a coalition can attain,

are independent of the actions chosen by the players outside this coalition:

the characteristic function gives the same value irrespective of how the other

players are partitioned. By contrast, in this paper, the model explicitly de-

scribes a procedure in which individual players, when deciding to form a

coalition, consider the consequences of their actions on the behavior of the

other players.

*Corresponding author.
1See for example, La Manna [1993].
2Greenberg [1995] emphasizes that the characteristic function ignores the possibility of

externalities.
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In order to model this cooperative behavior, we shall determine the gains

each coalition can obtain by the cooperation of its members and according

to the behavioral assumption that every possible coalition of firms makes

about firms that are not in the coalition. This is done by defining two

different games in characteristic function form, as in Hart and Kurz [1983],

each game corresponding to a different assumption about how the opponents

of a particular coalition will respond. However, unlike Hart and Kurz, we do

not assume that players evaluate the payoffs they receive in each coalition

structure according to an extension to the Shapley Value, first analyzed by

Owen [1977]. We rather assume that each coalition only gets its own worth,

as in Aumann and Maschler [1964], Aumann and Drèze [1975] and Shenoy

[1979].

For our purpose, we consider here an oligopoly, producing as homoge-

neous product. Different producers have different technologies, giving rise

to different cost structures. The more efficient producers may (for a price)

license their technology to others. If this happens, the purchaser will then

have the same cost structure as the seller. The question is as to what price

one or another of the firms may pay for these licenses.

There are two possible models to consider here:

(1) Several firms form a coalition. They then act as though they were

a single firm, sharing the most efficient (least-cost) technology, and

pooling their profits. In other words, we have here a merger.

(2) Several firms form a coalition. In fact, however, all they do is share

technologies. Each one of them now uses the most efficient tech-

nology, but otherwise acts independently of the other firms in the

coalition. The problem is then to determine the price the several

firms must pay for the use of this technology.

While interpretation 1 above can reasonably be made, this is precisely

the sort of behavior that anti-trust laws forbid. It is in fact possible that

some mergers might be allowed, but mergers are complicated procedures,

requiring all sorts of approval (from the shareholders? from the authorities?)

and thus, even if approval is ultimately granted, the game would have to

be modified to take into account the one-time costs of the merger. We

will therefore study the situation of coalition formation where firms adopt

a competitive behavior inside the coalition.
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2. The Model

To simplify matters, we will assume both the demand and the cost func-

tions are linear. By changing the units if necessary, we can assume that the

demand function is given by

(1) p = A−
∑

i

qi

where p is price, and qi is the amount produced by firm i.

Assume next that each firm has a linear cost structure, and that firm i has

unit costs ci. Without loss of generality, we will assume that the producers

are listed in order of efficiency, with the most efficient firms listed first, i.e.,

c1 ≤ c2 ≤ . . . ≤ cn

Then, for a Cournot-Nash equilibrium [1927, 1950], the general rule is

that (at equilibrium) firm i will produce a quantity

(2) qi =
A+

∑
j cj − (n+ 1)ci
n+ 1

(though admittedly some care should be taken to consider the case that

some of the firms – the least efficient ones, i.e., those with highest costs –

will produce nothing at all3).

Let us suppose a coalition S forms. The members of S will then all use

the most efficient technology available to them; i.e., all will produce with

unit costs

(3) cmin = min {ci | i ∈ S }

Each member of S will then produce the quantity

(4) qi =
A+

∑
j cj − (n+ 1)cmin

n+ 1

Total production for a coalition S will then be

(5) Q(S) =
s
(
A+

∑
j cj − (n+ 1)cmin

)
n+ 1

3The rule is that, if the qn given by equation (2) is negative, then firm n is effectively
driven out of the market. The firm will then produce 0, and the quantities given by (2)
must be recalculated, replacing n by n− 1, etc.
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where s is the cardinality of S. We note, however, that in the summation

term,
∑

j cj , each firm j ’s cost cj should be replaced by the lowest ck

among all k which belong to the same coalition as j does. Thus coalition

S ’s production, and also its profits, will depend on the behavior of firms

outside S. We therefore distinguish two special cases. Case 1 assumes that

the firms outside S all act together, and case 2 assumes that they all act

independently.

We choose to consider case 1 only: if coalition S forms, the complementary

coalition, N-S, also forms. Here we consider the minimum a coalition S can

guarantee that is we consider the worth possible scenario for the coalition S

whatever the behavior of the N-S firms.
In that case, the s firms in our coalition will all be producing with the

same unit costs, c = cmin, while the other n-s firms will all be producing

with unit costs k, given by

(6) k = min {cj | j ∈ (N − S)}

i.e., the lowest unit costs among the members of N-S. Recall, now, that

they are all producing independently.

Then, by the above, each member of S would be producing

(7) qi =
A+ (n− s) k − (n− s+ 1)c

n+ 1

while each member of N-S would produce

(8) qj =
A+ sc− (s+ 1)k

n+ 1

(assuming of course that these quantities are non-negative). Thus total

production would be

(9) Q = sqi + (n− s)qj =
nA− (n− s)k − sc

n+ 1

The price would then be

(10) p = A−Q =
A+ (n− s)k + sc

n+ 1

and profits, per unit, to each member firm of S would be
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(11) πi = p− c =
(
A+ (n− s)k − (n− s+ 1)c

n+ 1

)2

(which turns out to be the same as qi), and so profits to a single player i

are qi
2, and total profits to the coalition S will be

(12) v(S) = sq2i =
s [A+ (n− s) k − (n− s+ 1) c]2

(n+ 1)2

We can now treat this as the characteristic function of our (semi-coope-

rative) game.

3. The Results

We consider a 4-person game, with A = 10, and ci = 0, 1, 2, and 3

respectively. If no cooperation is allowed, then we find

q1 =
10 + 6− 5(0)

5
= 3.2

Similarly, q2 = 2.2, q3 = 1.2, and q4 = 0.2. Total production is then Q

= 6.8, so p = 3.2, and the several players’ profits are 10.24, 4.84, 1.44, and

0.04 respectively. We note parenthetically that firm 4 is essentially moribund

because of its high costs, and really needs some technological help if it is to

survive.
Suppose, now, that some cooperation is allowed, in the form of technology

sharing. In that case, we find that, if the coalitions {1} and {2, 3, 4} form,

then 2, 3, and 4 all produce with unit cost 1, so

q1 =
10 + 3− 5(0)

5
= 2.6

q2 =
10 + 3− 5(1)

5
= 1.6

And q3 = q4 = 1.6. Total production is Q = 7.4, so p = 2.6, and profits

are 6.76, 2.56, 2.56, and 2.56. Thus v({1}) = 6.76, v({2, 3, 4}) = 7.68.

In a similar way, we compute v(S ) for the remaining coalitions, to obtain

the characteristic function:
In each case, Q(S ) denotes the production by S assuming the structure

{S, N-S} forms.
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Table 1

S Q(S ) p v(S ) S Q(S ) p v(S )
∅ 0 0 {2, 3} 2.8 2.4 3.92
{1} 2.6 2.6 6.76 {2, 4} 2.8 2.4 3.92
{2} 1.2 2.2 1.44 {3, 4} 1.6 2.8 1.28
{3} 0.4 2.4 0.16 {1, 2, 3} 7.5 2.5 18.75
{4} 0 2.5 0 {1, 2, 4} 7.2 2.4 17.28
{1, 2} 5.6 2.8 15.68 {1, 3, 4} 6.6 2.2 14.52
{1, 3} 4.8 2.4 11.52 {2, 3, 4} 4.8 2.6 7.68
{1, 4} 4.8 2.4 11.52 N 8 2 16

As may be seen, the function v is not superadditive. The reason is that,

for example, coalition {1, 2, 3} would find it better to drive firm 4 out of

the market than to license to it the powerful technology owned by firm 1.

Nevertheless the function can be used for the usual game-theoretic purposes.

For example, assume the coalition {1, 2} forms. We see that, following the

Aumann-Drèze model, value to firm 1 is (15.68+6.76-1.44)/2 = 10.5, and to

firm 2 it is (15.68-6.76+1.44)/2 = 5.18. In fact, using firm 1’s technology,

they would each produce 2.8 units, and obtain a profit of 7.84. Thus, in this

case, firm 2 should pay firm 1 a licensing fee of 2.66 units for the right to

use this technology.

Suppose next that coalition {1, 2, 4} forms. In that case, the value of

the restricted game is (11, 4.55, 1.73) to 1, 2, and 4 respectively. Now if all

three firms use 1’s technology, they will each produce 2.4 units and obtain a

profit of 5.76. The value can therefore be obtained if firm 2 pays 1.21 units,

and firm 4 pays 4.03 units, for the license to this technology.

For {1, 2, 3}, the restricted game has value (11.46, 5.00, 2.28). In this

case, each of the firms would produce 2.5 units, with profits of 6.25. Then

2 and 3 would pay 1.25 and 3.97 to firm 1 for the license.

Definition 1. We call “fair price”, a price given by the difference between

the Aumann-Drèze value and the profit that each firm could obtain if each

benefits from the technology transfer i.e. ∀j ∈ S, with j 6= i, F := ϕj [v |S ]−

v (S)
s

, where i is the most efficient firm of the coalition S.

Take this analysis one step further. Assume {1, 2} has formed, receiving

(as discussed above) payoffs (10.5, 5.18). If firm 4 were now to approach

the coalition, asking for membership, the eventual payoffs would be (11,
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4.55, 1.73). Firm 1 would be happy enough about this, but 2 would reject

the deal. Similarly, if firm 3 were to approach and ask for membership,

2 would reject the deal. Finally, each of 1 and 2 would lose if it were to

leave the coalition and try to go it alone. We conclude that the coalition

{1, 2} is stable in the sense that (a) one of the members would reject any

new prospective member, and (b) each of the current members would lose,

should it decide to leave the coalition.
This leads us to the following definition:

Definition 2. A coalition S is stable if the following hold:

(1) for any k /∈ S, either (i) there is at least one j ∈ S such that

ϕj [v|S ∪ {k}] < ϕj [v|S], or (ii) ϕk[v|S ∪ {k}] < v({k})

(2) for each j ∈ S, ϕj [v|S] ≥ v({j}).

Example 1 (continued).

We compute the possibilities for each of the coalitions. Still following the

Aumann-Drèze model, values to the several firms are:

Table 2

Coalition Firm 1 Firm 2 Firm 3 Firm 4
{1,2} 10.5 5.18
{1,3} 9.06 2.46
{1,4} 9.14 2.38
{2,3} 2.6 1.32
{2,4} 2.68 1.24
{3,4} 0.72 0.56
{1,2,3} 11.46 5 2.28
{1,2,4} 11 4.54 1.74
{1,3,4} 10.48 2.06 1.98
{2,3,4} 3.893 1.933 1.854
{1,2,3,4} 10.32 3.73 1.25 0.70

We note here that coalition {1, 2, 3} is also stable, as (a) its members

would lose, should 4 join the group, and (b) any one of the three members

would lose should it decide to leave and go it alone. On closer analysis, all

the three-person coalitions are stable, as are the two-person coalitions that

include firm 1. The other two-person coalitions are unstable, as is the grand

coalition N.
We turn now to consider a 5-person game, with A = 15, and ci = 0, 1, 2,

2.5 and 3 respectively. If no cooperation is allowed, then we find
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q1 =
15 + (1 + 2 + 2.5 + 3)− 5(0)

6
=

23.5
6

= 3.917

Similarly, q2 = 2.917, q3 = 1.917, q4 = 1.417 and q5= 0.9167. Total

production is then Q = 66.5/6 = 11.083, so p = 23.5/6 = 3.917, and the

several players’ profits are 15.34, 8.507, 3.674, 2.007 and 0.8403 respectively.

We note that in this case, firm 5 is essentially moribund because of its high
costs.

We assume again that some cooperation is allowed, in the form of tech-

nology sharing. In that case, we find that, if the coalitions {1} and {2, 3, 4,

5} form, then 2, 3, 4 and 5 all produce with unit cost 1, so

q1 =
15 + 4(1)− 5(0)

6
=

19
6

= 3.167

q2 =
15 + 0− 2(1)

6
=

13
6

= 2.167

And q2 = q3 = q4 = q5 = 13/6. Total production is Q = 71/6, so p =

19/6, and profits are 10.028, 4.694, 4.694, 4.694, and 4.694. Thus v({1}) =

10.028, v({2, 3, 4, 5}) = 18.776 .

In a similar way, we compute v(S ) for the remaining coalitions, to obtain

the characteristic function:

Table 3

S Q(S ) p v(S ) S Q(S ) p v(S )
∅ 0 0 {1, 2, 3} 10 3.333 33.333
{1} 3.167 3.167 10.028 {1, 2, 4} 9.5 3.167 30.083
{2} 1.667 2.667 2.778 {1, 2, 5} 9.5 3.167 30.083
{3} 0.833 2.833 0.694 {1, 3, 4} 8.5 2.833 24.083
{4} 0.417 2.917 0.174 {1, 3, 5} 8.5 2.833 24.083
{5} 0 3 0 {1, 4, 5} 8.5 2.833 24.083
{1, 2} 7 3.5 24.5 {2, 3, 4} 6 3 12
{1, 3} 6 3 18 {2, 3, 5} 6 3 12
{1, 4} 6 3 18 {2, 4, 5} 6 3 12
{1, 5} 6 3 18 {3, 4, 5} 4.5 3.5 6.75
{2, 3} 3.667 2.833 6.722 {1, 2, 3, 4} 12 3 36
{2, 4} 3.667 2.833 6.722 {1, 2, 3, 5} 11.667 2.917 34.028
{2, 5} 3.667 2.833 6.722 {1, 2, 4, 5} 11.333 2.833 32.111
{3, 4} 2.333 3.167 2.722 {1, 3, 4, 5} 10.668 2.667 28.445
{3, 5} 2.333 3.167 2.722 {2, 3, 4, 5} 8.667 3.167 18.776
{4, 5} 1.667 3.333 1.389 N 12.5 2.5 31.25
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Following the Aumann-Drèze model, values to firm 1, firm 2, firm 3, firm

4 and firm 5 are:

Table 4

Coalition Firm 1 Firm 2 Firm 3 Firm 4 Firm 5
{1, 2} 15.875 8.625
{1, 3} 13.667 4.333
{1, 4}* 13.927 4.073
{1, 5}* 14.014 3.986
{2, 3} 4.403 2.319
{2, 4} 4.663 2.059
{2, 5} 4.75 1.972
{3, 4} 1.621 1.101
{3, 5} 1.708 1.014
{4, 5} 0.7815 0.6075
{1, 2, 3}* 18.718 9.454 5.162
{1, 2, 4}* 17.721 8.457 3.905
{1, 2, 5}* 17.75 8.486 3.847
{1, 3, 4}* 16.318 4.012 3.752
{1, 3, 5}* 16.347 4.041 3.694
{1, 4, 5}* 16.878 3.646 3.559
{2, 3, 4} 6.115 3.073 2.813
{2, 3, 5}* 6.144 3.102 2.755
{2, 4, 5} 6.675 2.706 2.619
{3, 4, 5} 2.897 1.97 1.883
{1, 2, 3, 4}* 19.189 8.986 4.541 3.284
{1, 2, 3, 5}* 18.710 8.507 4.062 2.748
{1, 2, 4, 5}* 18.115 7.911 3.071 3.013
{1, 3, 4, 5}* 17.810 3.830 3.433 3.375
{2, 3, 4, 5}* 7.740 3.962 3.566 3.508
N 17.260 7.190 3.106 2.115 1.579

We note here that starlit-coalitions are stable. For example, the coalition

{1, 2, 4, 5} is stable as its member would lose, should 3 join the group,

and any one of the four members would lose should it decide to leave and

go it alone. For the three-player coalitions case, we may remark that all

coalitions that include the more efficient firm are stable. Moreover, all four-

person coalitions are stable.

The question we can now ask is the following: what are the fair prices

firms 2, 4 and 5 ought to pay to firm 1 in order to be allowed to use the

most efficient technology? In fact, using firm 1’s technology, they would

each produce 2.833 units, and obtain a profit of 8.03. Hence, in this case,

firm 2 should pay firm 1 a fair price that corresponds to the licensing fee
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of 0.12 units to be allowed to use this technology. In the same way, firm 4

should pay 4.96 units to use the technology and finally firm 5 should pay

5.02 units.
Finally, we give an existence proof for stable coalitions:

Theorem 1. Every i ∈ N belongs to at least one stable coalition.

Proof. Essentially, we use a process, which starts with the singleton coalition

{i} and adds new members until a stable coalition is obtained.

Let then S 1 = {i}, and note that ϕi [v |S 1] = v({i}). Thus, for this

coalition, condition (b) holds.

Now either S 1 is stable, in which case our process stops, or S 1 is unstable.

Since (b) holds, this means (a) does not hold. Thus there is some k 6= i for

which neither (a-i) nor (a-ii) holds; i.e., ϕi [v |{i, k} ≥ ϕi [v |S 1] = v({i}) and

ϕk [v |{i, k} ≥ v({k})
Let now S 2 = {i, k}. Again note (b) holds. Now, if S 2 is stable, the

process stops. If not, there is a firm l 6= i, k such that neither (a-i) nor (a-ii)

holds. Thus, letting S 3 = {i, k, l}
ϕi [v |S 3] ≥ ϕi [v |S 2] ≥ v({i})
ϕk [v |S 3] ≥ ϕk [v |S 2] ≥ v({k})
ϕl [v |S 3] ≥ v({l}).
We continue in this way, adding a new member to the coalition at each

step, so that Sm+1 is simply Sm plus one new member. At each step,

ϕk [v |Sm+1] ≥ ϕk [v |Sm] ≥ v({k}) for each k ∈ Sm, and ϕl [v |Sm+1] ≥ v({l})
for the new member, l, of Sm+1.

Thus condition (b) holds at each step. Eventually this process of adding

new firms must stop as there is only a finite number of firms. The final

coalition, SM , satisfies condition (a) and is therefore stable. �
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